Skip to main content

Analytical Methods for Investigation of Lithium-Ion Battery Ageing

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAUTOENG))

Abstract

One of the major issues battery research must address is the lifetime of a cell. This can be reduced by physical and chemical ageing processes that occur inside the cell and are influenced by both the operating strategy and the surrounding conditions (e.g. temperature). To understand battery ageing, it is necessary to analyze the materials used in a cell at the microscopic level and correlate the results with electrical measurement data. This chapter describes a strategy for performing an ageing experiment by using a combination of analytical methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arora P, Zhang ZJ (2004) Battery separators. Chem Rev 104(10):4419–4462. doi:10.1021/cr020738u

    Article  Google Scholar 

  2. Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689. doi:10.1016/j.jpowsour.2013.05.040

    Article  Google Scholar 

  3. Besenhard JO, Winter M, Yang J, Biberacher W (1995) Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J Power Sources 54(2):228–231. doi:10.1016/0378-7753(94)02073-C

    Article  Google Scholar 

  4. Callahan RW, Nguyen KV, McLean JG, Propost J, Hoffman DK (1993) In: Proceedings of the 10th international seminar on primary and secondary battery technology and application, Fort Lauderdale, Florida

    Google Scholar 

  5. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer, New York

    Book  Google Scholar 

  6. Grützke M, Mönnighoff X, Winter M, Nowak S (2013) Extraction of organic carbonate based electrolytes with supercritical carbon dioxide for a high efficient recycling of lithium-ion batteries. In: 224th ECS meeting, https://ecs.confex.com/ecs/224/webprogram/Paper22925.html. Accessed 10 Sept 2013

  7. Kohs W, Santner HJ, Hofer F, Schröttner H, Doninger J, Barsukov I, Buqa H, Albering JH, Möller KC, Besenhard JO, Winter M (2003) A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase. J Power Sources 119–121:528–537. doi:10.1016/S0378-7753(03)00278-7

    Article  Google Scholar 

  8. Kostecki R, Norin L, Song X, McLarnon F (2004) Diagnostic studies of polyolefin separators in high-power Li-ion cells. J Electrochem Soc 151(4):A522–A526. doi:10.1149/1.1649233

    Article  Google Scholar 

  9. Krämer E, Schmitz R, Niehoff P, Passerini S, Winter M (2012) SEI-forming mechanism of 1-Fluoropropane-2-one in lithium-ion batteries. Electrochim Acta 81:161–165. doi:10.1016/j.electacta.2012.07.091

    Article  Google Scholar 

  10. Lux SF, Terborg L, Hachmoller O, Placke T, Meyer HW, Passerini S, Winter M, Nowak S (2013) LiTFSI stability in water and its possible use in aqueous lithium-ion batteries: pH dependency, electrochemical window and temperature stability. J Electrochem Soc 160(10):A1694–A1700. doi:10.1149/2.039310jes

    Article  Google Scholar 

  11. MacMullin RB, Muccini GA (1956) Characteristics of porous beds and structures. AIChE J 2(3):393–403. doi:10.1002/aic.690020320

    Article  Google Scholar 

  12. Markevich E, Salitra G, Levi MD, Aurbach D (2005) Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM. J Power Sources 146(1–2):146–150. doi:10.1016/j.jpowsour.2005.03.107

    Article  Google Scholar 

  13. Niehoff P, Passerini S, Winter M (2013) Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy. Langmuir 29(19):5806–5816. doi:10.1021/la400764r

    Article  Google Scholar 

  14. Norin L, Kostecki R, McLarnon F (2002) Study of membrane degradation in high-power lithium-ion cells. Electrochem Solid-State Lett 5(4):A67–A69. doi:10.1149/1.1457206

    Article  Google Scholar 

  15. Peabody C, Arnold CB (2011) The role of mechanically induced separator creep in lithium-ion battery capacity fade. J Power Sources 196(19):8147–8153. doi:10.1016/j.jpowsour.2011.05.023

    Article  Google Scholar 

  16. Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051. doi:10.1149/1.2128859

    Article  Google Scholar 

  17. Prochazka W, Pregartner G, Cifrain M (2013) Design-of-experiment and statistical modeling of a large scale aging experiment for two popular lithium ion cell chemistries. J Electrochem Soc 160(8):A1039–A1051. doi:10.1149/2.003308jes

    Article  Google Scholar 

  18. Santner HJ, Möller KC, Ivančo J, Ramsey MG, Netzer FP, Yamaguchi S, Besenhard JO, Winter M (2003) Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. J Power Sources 119–121:368–372. doi:10.1016/S0378-7753(03)00268-4

    Article  Google Scholar 

  19. Santner HJ, Korepp C, Winter M, Besenhard JO, Möller KC (2004) In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Anal Bioanal Chem 379(2):266–271. doi:10.1007/s00216-004-2522-4

    Article  Google Scholar 

  20. Song KM, Park SW, Hong WH, Lee H, Kwak SS, Liu JR (1992) Isolation of Vindoline from Catharanthus roseus by supercritical fluid extraction. Biotechnol Prog 8(6):583–586. doi:10.1021/bp00018a018

    Article  Google Scholar 

  21. Spotnitz R (2011) Separators for lithium-ion batteries. In: Daniel C, Besenhard J (eds) Handbook of battery materials, 2nd edn. Wiley-VCH, Weinheim, chap 20, doi:10.1002/9783527637188.ch20

  22. Stashenko EE, Puertas MA, Combariza MY (1996) Volatile secondary metabolites from Spilanthes americana obtained by simultaneous steam distillation-solvent extraction and supercritical fluid extraction. J Chromatogr A 752(1–2):223–232. doi:10.1016/S0021-9673(96)00480-3

    Article  Google Scholar 

  23. Terborg L, Nowak S, Passerini S, Winter M, Karst U, Haddad PR, Nesterenko PN (2012) Ion chromatographic determination of hydrolysis products of hexafluorophosphate salts in aqueous solution. Anal Chim Acta 714:121–126. doi:10.1016/j.aca.2011.11.056

    Article  Google Scholar 

  24. Terborg L, Weber S, Blaske F, Passerini S, Winter M, Karst U, Nowak S (2013) Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte. J Power Sources 242:832–837. doi:10.1016/j.jpowsour.2013.05.125

    Article  Google Scholar 

  25. Terborg L, Weber S, Passerini S, Winter M, Karst U, Nowak S (2014) Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes. J Power Sources 245:836–840. doi:10.1016/j.jpowsour.2013.07.030

    Article  Google Scholar 

  26. Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281. doi:10.1016/j.jpowsour.2005.01.006

    Article  Google Scholar 

  27. Wagner MR, Raimann PR, Trifonova A, Moeller KC, Besenhard JO, Winter M (2004) Electrolyte decomposition reactions on tin- and graphite-based anodes are different. Electrochem Solid-State Lett 7(7):A201–A206. doi:10.1149/1.1739312

    Article  Google Scholar 

  28. Winter M (2009) The solid electrolyte interphase - the most important and the least understood solid electrolyte in rechargeable Li batteries. Z Phys Chem 223(10–11):1395–1406. doi:10.1524/zpch 2009.6086

    Article  Google Scholar 

  29. Winter M, Besenhard JO (1999) Wiederaufladbare batterien. Chem unserer Zeit 33(6):320–332. doi:10.1002/ciuz.19990330603

    Article  Google Scholar 

  30. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269. doi:10.1021/cr020730k

    Article  Google Scholar 

  31. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763. doi:10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

  32. Winter M, Imhof R, Joho F, Novák P (1999) FTIR and DEMS investigations on the electroreduction of chloroethylene carbonate-based electrolyte solutions for lithium-ion cells. J Power Sources 81–82:818–823. doi:10.1016/S0378-7753(99)00116-0

    Article  Google Scholar 

  33. Winter M, Appel WK, Evers B, Hodal T, Möller KC, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO (2001) Studies on the anode/electrolyte interface in lithium ion batteries. Monatsh Chem 132(4):473–486. doi:10.1007/s007060170110

    Article  Google Scholar 

  34. Yu DY, Donoue K, Kadohata T, Murata T, Matsuta S, Fujitani S (2008) Impurities in liFePO\(_{4}\) and their influence on material characteristics. J Electrochem Soc 155(7):A526–A530. doi:10.1149/1.2919105

    Article  Google Scholar 

  35. Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162(2):1379–1394. doi:10.1016/j.jpowsour.2006.07.074

    Article  Google Scholar 

  36. Zhang SS, Jow TR (2002) Aluminum corrosion in electrolyte of Li-ion battery. J Power Sources 109(2):458–464. doi:10.1016/S0378-7753(02)00110-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Westfälische Wilhelms-Universität Münster, the Ministry for Economic Affairs, Energy and Industry (MWEIHM) of the State of North Rhine-Westphalia, the Ministry of Innovation, Science and Research (MIWF) of the State of North Rhine-Westphalia, the German Federal Ministry of Economics and Technology (BMWi), and the German Federal Ministry of Education and Research (BMBF). Sascha Weber furthermore acknowledges the financial support of the “COMET K2 - Competence Centers for Excellent Technologies Program” of the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of Styria, and the Styrian Business Promotion Agency (SFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Weber, S., Nowak, S., Schappacher, F. (2014). Analytical Methods for Investigation of Lithium-Ion Battery Ageing. In: Thaler, A., Watzenig, D. (eds) Automotive Battery Technology. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-02523-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02523-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02522-3

  • Online ISBN: 978-3-319-02523-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics