Skip to main content

Battery Modelling for Crash Safety Simulation

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAUTOENG))

Abstract

Finite element battery models used for crash simulation are effective tools for designing safe, lightweight battery systems for electric and hybrid electric vehicles. This chapter describes the currently available methods for integrating batteries into full-vehicle crash models and discusses their limitations at the present state of implementation. Innovative modelling approaches are able to determine the specific battery failure modes, such as short circuits and (electrolyte-) leakage. These methods are discussed and evaluated here based on their future applicability in the vehicle design process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    FMVSS: Federal Motor Vehicle Safety Standards.

  2. 2.

    ECE: Economic Commission for Europe.

  3. 3.

    NCAP: New Car Assessment Program.

  4. 4.

    ADAC: Allgemeiner Deutscher Automobil-Club e. V.

  5. 5.

    IIHS: Injury Institute for Highway Safety.

  6. 6.

    SIMULIA Abaqus FEA, LSTC LS-Dyna, ESI Group PAM-Crash, Altair Engineering RADIOSS.

  7. 7.

    38.3 Drop Tests [4], FreedomCAR [5], EUCAR hazard levels.

  8. 8.

    All images of cylindrical cells in this chapter show type 26650 cells (26 mm diameter and 65 mm length).

References

  1. ISO/IEC PAS 16898:2012 (2012) Electrically propelled road vehicles—dimensions and designation of secondary lithium-ion cells

    Google Scholar 

  2. Kramer F, Franz U, Lorenz B, Remfrey J, Schöneburg R (2013) Integrale Sicherheit von Kraftfahrzeugen: Biomechanik - Simulation - Sicherheit im Entwicklungsprozess. ATZ/MTZ-Fachbuch

    Google Scholar 

  3. Bathe K (2002) Finite-elemente-methoden. Springer, Heidelberg

    Book  Google Scholar 

  4. Recommendations on the transport of dangerous goods manual of tests and criteria (2009). Technical report, United Nations

    Google Scholar 

  5. Crafts CC, Doughty DH (2006) Sandia report FreedomCAR electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications. Technical report, Sandia National Laboratories

    Google Scholar 

  6. Cowper G, Symonds P (1958) Strain hardening and strain rate effects in the impact loading of cantilever beams. Applied Mathematics Report, Brown University, Providence

    Google Scholar 

  7. ESI Group (2012) Virtual performance solution 2010

    Google Scholar 

  8. Hill R (1950) The mathematical theory of plasticity. University Press, Oxford

    MATH  Google Scholar 

  9. Johnson G, Cook W (1983) A constitutive model and data for metals subjected to large strains, high strain rates and hight temperatures. In: Proceedings of the 7th international symposium on ballistics, The Hague, The Netherlands

    Google Scholar 

  10. Jones R (1999) Mechanics of composite materials. Taylor and Francis, Washington

    Google Scholar 

  11. LSTC (2013) LS-Dyna manual

    Google Scholar 

  12. von Mises R (1913) Mechanik der festen Körper im plastisch-deformablen Zustand, Göttinger Nachrichten. Math Phys Klasse 4:582–592

    Google Scholar 

  13. Steinbeck-Behrens C, Steinbeck J, Schroeder M, Duan H, Hoffmann A, Brylla U, Kulp S, Pinner S, Rambke M, Leck L, Awiszus B, Bolick S, Katzenberger J, Schulz M, Runde S, Czaykowska A, Mager K (2012) Durchgängige Virtualisierung der Entwicklung und Produktion von Fahrzeugen (VIPROF). Technical report, BMBF, Germany

    Google Scholar 

  14. Sahraei E, Campbell J, Wierzbicki T (2012) Modeling and short circuit detection of 18659 Li-Ion cells under mechanical abuse conditions. J Power Sources 220:360–372

    Article  Google Scholar 

  15. Greve L, Fehrenbach C (2012) Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells. J Power Sources 214:377–385

    Article  Google Scholar 

  16. Wierzbicki T, Sahraei E (2013) Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J Power Sources 241:467–476

    Article  Google Scholar 

  17. Bai Y, Teng X, Wierzbicki T (2009) On the application of stress triaxiality formula for plane strain fracture testing. J Eng Mater Technol Trans ASME 131(2):021 002–1–10

    Article  Google Scholar 

  18. Basaran M, Wölkerling S, Feucht M, Neukamm F, Weichert D (2010) An extension of the GISSMO damage model based on lode angle dependence. In: LS-Dyna forum. Dynamore, Bamberg

    Google Scholar 

  19. Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I yield criteria and flow rules for porous ductile media. J Eng Mater-T ASME 99:2–15

    Article  Google Scholar 

  20. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  21. Anderson T (2005) Fracture mechanics—fundamentals and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  22. Kunter K, Heubrandtner T, Trattnig G, Mlekusch B, Fellner B, Pippan R (2011) Simulation of crack propagation in high strength automotive steel sheets using hybrid Trefftz method. In: 2nd European conference on eXtended finite element. Cardiff, UK

    Google Scholar 

  23. Knops A (2008) Analysis of failure in fiber polymer laminates: the theory of alfred puck. Springer, Berlin

    Google Scholar 

  24. Kolling S, Haufe A, Feucht M, Bois PD (2006) A constitutive formulation for polymers subjected to high strain rates. In: 9th international LS-Dyna users conference. Detroit, USA

    Google Scholar 

  25. Boisse P (2010) Simulations of composite reinforcement forming. In: Dobnik Dubrovski P (ed) Woven fabric engineering. InTech, Rijeka, p 387–414

    Google Scholar 

  26. P676: Methodenentwicklung zur Berechnung von höherfesten Stahlklebeverbindungen des Fahrzeugbaus unter Crashbelastung (2008). Technical report, Forschungsvereinigung Stahlanwendung e.V. Düsseldorf

    Google Scholar 

  27. Chauffray M, Delattre G, Guerin L, Pouvreau C (2013) Prediction of laser welding failure on seat mechanisms simulation. In: 9th European LS-DYNA conference. Manchester

    Google Scholar 

  28. Heubrandtner T, Scharrer G (2008) Hybrid-Trefftz formulation of spotwelds in car bodies. In: Leuven symposium on applied mechanics in engineering, pp 187–200

    Google Scholar 

  29. Malcolm S, Nutwell E (2007) Spotweld failure prediction using solid element assemblies. In: 6th European LS-Dyna users’ conference. Gothenburg, Sweden

    Google Scholar 

  30. Szlosarek R, Karall T, Enzinger N, Hahne C, Meyer N (2013) Mechanische Prüfung von fliesslochformenden Schraubverbindungen zwischen faserverstärkten Kunststoffen und Metallen. Mater Test 10:737–742

    Article  Google Scholar 

  31. Golubkov A (2013) Thermal-runaway experiments on consumer li-ion batteries with metal-oxide and olivin-type cathodes. In: RSC Advances

    Google Scholar 

  32. Brödner S (2012) Gummidichtungen in der Hydraulik - Grundlegendes and Möglichkeiten der FE-Simulation. In: 15. Poly-King Event, Würzburg

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the “COMET K2—Competence Centres for Excellent Technologies Programme” of the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Trattnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Trattnig, G., Leitgeb, W. (2014). Battery Modelling for Crash Safety Simulation. In: Thaler, A., Watzenig, D. (eds) Automotive Battery Technology. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-02523-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02523-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02522-3

  • Online ISBN: 978-3-319-02523-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics