Skip to main content

Heat in the Groundwater Flow

  • Chapter
  • First Online:
Geothermics

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

The presence of groundwater flow implies other heat transfer mechanisms rather than pure conduction. Several strategies have been developed to explore the heat transport associated with water flow. This chapter presents some analytical methods and shows how subsurface temperatures can provide a quantitative tool for inferring water flow in permeable layers and heat advection in hydrothermal systems. Thermal convection in deep aquifers and its potential are then analyzed by means of the dimensionless Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968

    Article  Google Scholar 

  • Anderson MP, Woessner WW (1992) The role of the postaudit in model validation. Adv Water Resour 15:167–173

    Article  Google Scholar 

  • Aziz K, Bories SA, Combarnous MA (1973) The influence of natural convection in gas, oil and water reservoirs. J Canad Petrol Techn 12:41–47

    Google Scholar 

  • Beck AE, Garven G, Stegena L (1989) Hydrogeological regimes and their subsurface thermal effects. Geophys Monogr vol 47. Americal Geophysical Union, Washington DC

    Google Scholar 

  • Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1:325–328

    Article  Google Scholar 

  • Clauser C, Villinger H (1990) Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben. Geophys J Int 100:393–414

    Article  Google Scholar 

  • Domenico PA, Schwartz W (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York

    Google Scholar 

  • Domenico PA, Palciauskas VV (1973) Theoretical analysis of forced convective heat transfer in regional ground−water flow. Geol Soc Am Bull 84:3803–3814

    Article  Google Scholar 

  • Forster C, Smith L (1989) The influence of groundwater flow on thermal regimes in mountainous terrain: a model study. J Geophys Res 94:9439–9451

    Article  Google Scholar 

  • Frumkin A, Gvirtzman H (2006) Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel. J Hydrol 318:316–333

    Article  Google Scholar 

  • Garg SK, Kassoy DR (1981) Convective heat and mass transfer in hydrothermal systems. In Rybach L, Muffler LJP (eds). Geothermal systems. Wiley, New York

    Google Scholar 

  • Goguel J (1976) Geothermics. MacGraw-Hill, New York

    Google Scholar 

  • Goldscheider N, Mádl-SzÅ‘myi J, ErÅ‘ss A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18:1303–1318

    Article  Google Scholar 

  • Haenel R, Rybach L, Stegena L (1988) Fundamentals of geothermics. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat−flow density determination. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Hanano M (1998) A simple model of a two-layered high temperature liquid dominated geothermal reservoir as a part of a large scale hydrothermal convection system. Transp Porous Media 33:3–27

    Article  Google Scholar 

  • Holzbecher EO (1998) Modeling density−driven flow in porous media. Springer Verlag, Berlin

    Book  Google Scholar 

  • Horton CW, Rogers FT Jr (1945) Convection currents in a porous medium. J Appl Phys 16:367–370

    Article  Google Scholar 

  • Jessop AM (1990) Thermal geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Kühn M, Dobert F, Gessner K (2006) Numerical investigation of the effect of heterogeneous permeability distributions on free convection in hydrothermal system at Mount Isa, Australia. Earth Planet Sc Lett 244:655–671

    Article  Google Scholar 

  • Lachenbruch AJ, Sass JH (1977) Heat flow in the United States and the thermal regime of the crust. In: Heacock JG (ed) The earth’s crust, its nature and physical properties. American Geophysical Union, Washington DC

    Google Scholar 

  • Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Cambridge Phil Soc 44:508–521

    Article  Google Scholar 

  • Lu N, Ge S (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32:1449–1453

    Article  Google Scholar 

  • Lubimova EA, Von Herzen RP, Udintsev GB (1965) On heat transfer through the ocean floor. In: Lee HL (ed) Terrestrial heat flow. Port City Press, Baltimore

    Google Scholar 

  • Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev Geophys 37:127–150

    Article  Google Scholar 

  • Mansure A, Reiter M (1979) A vertical groundwater movement correction for heat flow. J Geophys Res 84:3490–3496

    Article  Google Scholar 

  • Murphy HD (1979) Convective instabilities in vertical fractures and faults. J Geophys Res 84:6121–6130

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P, Å afanda J (2000) Evidence of climate warming from underground temperatures in NW Italy. Global Planet Change 25:215–222

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (2010) Darcy velocity and Péclet number analysis from underground thermal data. Boll Geofis Teor Appl 51:361–371

    Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (2011a) Groundwater flow analysis using different geothermal constraints: the case study of Acqui Terme area, northwestern Italy. J Volcan Geoth Res 199:38–46

    Article  Google Scholar 

  • Pasquale V, Gola G, Chiozzi P, Verdoya M (2011b) Thermophysical properties of the Po basin rocks. Geophys J Int 186:69–81

    Article  Google Scholar 

  • Pasquale V, Chiozzi P, Verdoya M (2013) Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po plain, Italy. Tectonophysics 594:1–12

    Article  Google Scholar 

  • Pestov I (2000) Thermal convection in the great Artesian basin, Australia. Water Res Manag 14:391–403

    Article  Google Scholar 

  • Phillips OM (1991) Flow and reactions in permeable rocks. Cambridge University Press, Cambridge

    Google Scholar 

  • Raffensperger JP, Vlassopoulos D (1999) The potential for free convection in sedimentary basins. Hydrogeol J 7:505–520

    Article  Google Scholar 

  • Reiter M (2001) Using precision temperature logs to estimate horizontal and vertical groundwater flow components. Water Resour Res 37:663–674

    Article  Google Scholar 

  • Schoeller H (1962) Les eaux souterraines. Masson & Cie, Paris

    Google Scholar 

  • Smith L, Chapman DS (1983) On the thermal effects of groundwater flow 1: regional scale systems. J Geophys Res 88:593–608

    Article  Google Scholar 

  • Stallman RW (1963) Computation of ground−water velocity from temperature data. In: Bentall R (ed) Methods of collecting and interpreting ground−water data. Survey Water, U.S. Geol

    Google Scholar 

  • Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70:2821–2827

    Article  Google Scholar 

  • Swanson SK, Bahr JM (2004) Analytical and numerical models to explain steady rates of spring flow. Ground Water 42:747–759

    Article  Google Scholar 

  • Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3:4–16

    Article  Google Scholar 

  • Turcotte D, Schubert GL (2002) Geodynamics–application of continuum physics to geological problems, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Verdoya M, Chiozzi P, Pasquale V (2007) Thermal log analysis for recognition of ground surface temperature change and water movements. Clim Past 3:315–324

    Article  Google Scholar 

  • Verdoya M, Pasquale V, Chiozzi P (2008) Inferring hydro−geothermal parameters from advectively perturbed thermal logs. Int J Earth Sc 97:333–344

    Article  Google Scholar 

  • Wood JR, Hewett TA (1982) Fluid convection and mass transfer in porous sandstones—a theoretical model. Geochim Cosmochim Acta 46:1707–1713

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Muhlhaus HB, Ord A, Lin G (2003) Convective instability 3D fluid saturated geological fault zones heated from below. Geophys J Int 155:213–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Pasquale .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Pasquale, V., Verdoya, M., Chiozzi, P. (2014). Heat in the Groundwater Flow. In: Geothermics. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-02511-7_5

Download citation

Publish with us

Policies and ethics