Skip to main content

Choosing a Tractography Algorithm: On the Effects of Measurement Noise

  • Conference paper
  • First Online:
Computational Diffusion MRI and Brain Connectivity

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Diffusion MRI tractography has evolved into a widely used, important tool within neurosciences, providing the foundation for in-vivo fiber anatomy and hence for mapping of structural connectivity in the human brain. This renders it crucially important to understand the influence of the various MRI imaging artifacts on the tractography results. In this paper, we focus on the thermal noise that is present in all MRI measurements and compare its effect on the output of several established tractography algorithms. We create a reference dataset by denoising with a Non-Local Means filter and evaluate the effect of noise added to the reference on the tractography results with a Monte-Carlo simulation. Our results indicate that among the algorithms tested, the Tensorlines approach is the most robust for tracking white matter fiber bundles and both the Tensorlines and the Bayes DTI approach are good choices for calculating gray matter structural connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST

  2. 2.

    http://surfer.nmr.mgh.harvard.edu/fswiki

References

  1. Barbieri, S., Bauer, M.H.A., Klein, J., Nimsky C., Hahn H.K.: Segmentation of fiber tracts based on an accuracy analysis on diffusion tensor software phantoms. NeuroImage 55, 532–544 (2011)

    Article  Google Scholar 

  2. Bastiani, M., Shah, N.J., Goebel, R., Roebroeck, A.: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage 62, 1732–1749 (2012)

    Article  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, vol. 2, pp. 60–65 (2005)

    Google Scholar 

  4. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise non local means denoising filter for 3D magnetic resonance images. IEEE Trans. Med. Imaging 27, 425–441 (2008)

    Article  Google Scholar 

  5. Descoteaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., Deriche, R.: Impact of rician adapted non-local means filtering on HARDI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008, New York. LNCS, vol. 5242, pp. 122–130. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  6. Dietrich, O., Raya, J.G., Reeder, S.B., Reiser, M.F., Schoenberg, S.O.: Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J. Magn. Reson. Imaging 26, 375–385 (2007)

    Article  Google Scholar 

  7. Dolui, S., Kuurstra, A., Patarroyo, I.C.S., Michailovich O.V.: A new similarity measure for non-local means filtering of MRI images. arXiv preprint arXiv:1110.5945 (2011)

    Google Scholar 

  8. Dyrby, T.B., Søgaard, L.V., Parker, G.J., Alexander, D.C., Lind, N.M., Baaré W.F.C., Hay-Schmidt. A., Eriksen, N., Pakkenberg, B., Paulson, O.B., Jelsing, J.: Validation of in vitro probabilistic tractography. NeuroImage 37, 1267–1277 (2007)

    Article  Google Scholar 

  9. Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A., Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.-F., Poupon, C.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56, 220–234 (2011)

    Article  Google Scholar 

  10. Friman, O., Farneback, G., Westin, C.-F.: A Bayesian approach for stochastic white matter tractography. IEEE Trans. Med. Imaging 25, 965–978 (2006)

    Article  Google Scholar 

  11. Huang, H., Zhang, J., van Zijl, P.C.M., Mori, S.: Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach. Magn. Reson. Med. 52, 559–565 (2004)

    Article  Google Scholar 

  12. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Société vaudoise des sciences naturelles, Impr. Réunies (1908). Quoted in: Real, R., Vargas, J.M.: The Probabilistic Basis of Jaccard’s Index of Similarity. Systematic Biology 45, 380–385 (1980)

    Google Scholar 

  13. Lazar, M., Alexander A.L.: An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations. NeuroImage 20, 1140–1153 (2003)

    Article  Google Scholar 

  14. Mori, S., Crain, B.J., Chacko, V.P., Van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999)

    Article  Google Scholar 

  15. Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. NeuroImage 54, 955–962 (2011)

    Article  Google Scholar 

  16. Schmahmann, J.D., Pandya, D.N.: Fiber Pathways of the Brain. Oxford University Press, Inc., New York (2006)

    Book  Google Scholar 

  17. Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007)

    Article  Google Scholar 

  18. Tristán-Vega, A., Aja-Fernández, S.: DWI filtering using joint information for DTI and HARDI. Med. Image Anal. 14, 205–218 (2010)

    Article  Google Scholar 

  19. Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004)

    Article  Google Scholar 

  20. Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In: VIS’99: Proceedings of the Conference on Visualization: Celebrating Ten Years, San Francisco, pp. 249–253. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  21. Yo, T.-S., Anwander, A., Descoteaux, M., Fillard, P., Poupon, C., Knösche, T.R.: Quantifying brain connectivity: a comparative tractography study. In: Yang, G.-Z., Hawkes, D.J., Rueckert, D., Noble, A., Taylor, C. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, London, Part I, pp. 886–893. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was funded by the Leipzig University. We thank our colleague Stefan Philips for providing the implementation of Reisert’s algorithm, Mathias Goldau and Stefan Koch for proofreading and fruitful discussions, and Corina Melzer from the Max-Planck-Institute in Cologne for her feedback. We would also like to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Reichenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Reichenbach, A., Hlawitschka, M., Tittgemeyer, M., Scheuermann, G. (2014). Choosing a Tractography Algorithm: On the Effects of Measurement Noise. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O'Donnell, L., Panagiotaki, E. (eds) Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-02475-2_11

Download citation

Publish with us

Policies and ethics