Cohomology of Almost-Complex Manifolds

  • Daniele Angella
Part of the Lecture Notes in Mathematics book series (LNM, volume 2095)


Let X be a differentiable manifold endowed with an almost-complex structure J. Note that if J is not integrable, then the Dolbeault cohomology is not defined. In this chapter, we are concerned with studying some subgroups of the de Rham cohomology related to the almost-complex structure: these subgroups have been introduced by T.-J. Li and W. Zhang in (Comm. Anal. Geom. 17(4):651–683, 2009), in order to study the relation between the compatible and the tamed symplectic cones on a compact almost-complex manifold, with the aim to throw light on a question by S.K. Donaldson, (Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 153–172, Question 2) (see Sect. 4.4.2), and it would be interesting to consider them as a sort of counterpart of the Dolbeault cohomology groups in the non-integrable (or at least in the non-Kähler) case, see Drǎghici et al. (Int. Math. Res. Not. IMRN 1:1–17, 2010, Lemma 2.15, Theorem 2.16). In particular, we are interested in studying when they let a splitting of the de Rham cohomology, and their relations with cones of metric structures.


  1. [AB90]
    L. Alessandrini, G. Bassanelli, Small deformations of a class of compact non-Kähler manifolds. Proc. Am. Math. Soc. 109(4), 1059–1062 (1990)MathSciNetzbMATHGoogle Scholar
  2. [AB91]
    L. Alessandrini, G. Bassanelli, Compact p-Kähler manifolds. Geom. Dedicata 38(2), 199–210 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [AGH63]
    L. Auslander, L.W. Green, F.J. Hahn, Flows on Homogeneous Spaces, With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. Annals of Mathematics Studies, vol. 53 (Princeton University Press, Princeton, 1963)Google Scholar
  4. [AL94]
    M. Audin, J. Lafontaine (eds.), Holomorphic Curves in Symplectic Geometry. Progress in Mathematics, vol. 117 (Birkhäuser Verlag, Basel, 1994)Google Scholar
  5. [Ale11]
    L. Alessandrini, Classes of compact non-Kähler manifolds. C. R. Math. Acad. Sci. Paris 349(19–20), 1089–1092 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [AR12]
    D. Angella, F.A. Rossi, Cohomology of D-complex manifolds. Differ. Geom. Appl. 30(5), 530–547 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [AT11]
    D. Angella, A. Tomassini, On cohomological decomposition of almost-complex manifolds and deformations. J. Symplectic Geom. 9(3), 403–428 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [AT12a]
    D. Angella, A. Tomassini, On the cohomology of almost-complex manifolds. Int. J. Math. 23(2), 1250019, 25 (2012)Google Scholar
  9. [AT12b]
    D. Angella, A. Tomassini, Symplectic manifolds and cohomological decomposition. J. Symplectic Geom., arXiv:1211.2565v1 [math.SG] (2012 to appear)Google Scholar
  10. [ATZ12]
    D. Angella, A. Tomassini, W. Zhang, On cohomological decomposition of almost-Kähler structures. Proc. Am. Math. Soc., arXiv:1211.2928v1 [math.DG] (2012 to appear)Google Scholar
  11. [Bel00]
    F.A. Belgun, On the metric structure of non-Kähler complex surfaces. Math. Ann. 317(1), 1–40 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [BFV11]
    E. Buzano, A. Fino, L. Vezzoni, The Calabi-Yau equation for T 2-bundles over \({\mathbb{T}}^{2}\): the non-Lagrangian case. Rend. Semin. Mat. Univ. Politec. Torino 69(3), 281–298 (2011)MathSciNetGoogle Scholar
  13. [BG88]
    Ch. Benson, C.S. Gordon, Kähler and symplectic structures on nilmanifolds. Topology 27(4), 513–518 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [BG90]
    Ch. Benson, C.S. Gordon, Kähler structures on compact solvmanifolds. Proc. Am. Math. Soc. 108(4), 971–980 (1990)MathSciNetzbMATHGoogle Scholar
  15. [BHPVdV04]
    W.P. Barth, K. Hulek, C.A.M. Peters, A. Van de Ven, Compact Complex Surfaces, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4 (Springer, Berlin, 2004)Google Scholar
  16. [Bis89]
    J.-M. Bismut, A local index theorem for non-Kähler manifolds. Math. Ann. 284(4), 681–699 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Bry88]
    J.-L. Brylinski, A differential complex for Poisson manifolds. J. Differ. Geom. 28(1), 93–114 (1988)MathSciNetzbMATHGoogle Scholar
  18. [Buc99]
    N. Buchdahl, On compact Kähler surfaces. Ann. Inst. Fourier (Grenoble) 49(1), 287–302 (1999)Google Scholar
  19. [Cal57]
    E. Calabi, On Kähler manifolds with vanishing canonical class, in Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz (Princeton University Press, Princeton, 1957), pp. 78–89Google Scholar
  20. [CMMS04]
    V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets. J. High Energy Phys. 3(028), 73 pp. (2004) (electronic)Google Scholar
  21. [dAFdLM92]
    L.C. de Andrés, M. Fernández, M. de León, J.J. Mencía, Some six-dimensional compact symplectic and complex solvmanifolds. Rend. Mat. Appl. (7) 12(1), 59–67 (1992)Google Scholar
  22. [dBM10]
    P. de Bartolomeis, F. Meylan, Intrinsic deformation theory of CR structures. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (3), 459–494 (2010)Google Scholar
  23. [dBT06]
    P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yau manifolds. Ann. Inst. Fourier (Grenoble) 56 (5), 1281–1296 (2006)Google Scholar
  24. [DGMS75]
    P. Deligne, Ph.A. Griffiths, J. Morgan, D.P. Sullivan, Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [DL13]
    T. Drǎghici, H. Leon, On 4-dimensional non-unimodular symplectic Lie algebras, preprint, 2013Google Scholar
  26. [DLZ10]
    T. Drǎghici, T.-J. Li, W. Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds. Int. Math. Res. Not. IMRN 2010(1), 1–17 (2010)Google Scholar
  27. [DLZ11]
    T. Drǎghici, T.-J. Li, W. Zhang, On the J-anti-invariant cohomology of almost complex 4-manifolds. Q. J. Math. 64(1), 83–111 (2013)MathSciNetCrossRefGoogle Scholar
  28. [DLZ12]
    T. Drǎghici, T.-J. Li, W. Zhang, Geometry of tamed almost complex structures on 4-dimensional manifolds, in Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Studies in Advanced Mathematics, 51, pt. 1, vol. 2 (American Mathematical Society, Providence, 2012), pp. 233–251Google Scholar
  29. [Don06]
    S.K. Donaldson, Two-forms on four-manifolds and elliptic equations, Inspired by S.S. Chern, in Nankai Tracts Mathematics, vol. 11 (World Scientific Publishing, Hackensack, 2006), pp. 153–172Google Scholar
  30. [DZ12]
    T. Drǎghici, W. Zhang, A note on exact forms on almost complex manifolds. Math. Res. Lett. 19(3), 691–697 (2012)MathSciNetCrossRefGoogle Scholar
  31. [EFV12]
    N. Enrietti, A. Fino, L. Vezzoni, Tamed symplectic forms and strong Kahler with torsion metrics. J. Symplectic Geom. 10(2), 203–224 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. [FdLS96]
    M. Fernández, M. de León, M. Saralegui, A six-dimensional compact symplectic solvmanifold without Kähler structures. Osaka J. Math. 33(1), 19–35 (1996)MathSciNetzbMATHGoogle Scholar
  33. [FLSV11]
    A. Fino, Y.Y. Li, S. Salamon, L. Vezzoni, The Calabi-Yau equation on 4-manifolds over 2-tori. Trans. Am. Math. Soc. 365(3), 1551–1575 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. [FLY12]
    J. Fu, J. Li, S.-T. Yau, Balanced metrics on non-Kähler Calabi-Yau threefolds. J. Differ. Geom. 90(1), 81–129 (2012)MathSciNetzbMATHGoogle Scholar
  35. [FMS03]
    M. Fernández, V. Muñoz, J.A. Santisteban, Cohomologically Kähler manifolds with no Kähler metrics. Int. J. Math. Math. Sci. 2003(52), 3315–3325 (2003)CrossRefzbMATHGoogle Scholar
  36. [FPS04]
    A. Fino, M. Parton, S. Salamon, Families of strong KT structures in six dimensions. Comment. Math. Helv. 79(2), 317–340 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [FT10]
    A. Fino, A. Tomassini, On some cohomological properties of almost complex manifolds. J. Geom. Anal. 20(1), 107–131 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. [FY11]
    J. Fu, S.-T. Yau, A note on small deformations of balanced manifolds. C. R. Math. Acad. Sci. Paris 349(13–14), 793–796 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  39. [Gau77]
    P. Gauduchon, Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285(5), A387–A390 (1977)MathSciNetGoogle Scholar
  40. [GH80]
    A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123(1), 35–58 (1980)Google Scholar
  41. [Gro85]
    M. Gromov, Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  42. [Has89]
    K. Hasegawa, Minimal models of nilmanifolds. Proc. Am. Math. Soc. 106(1), 65–71 (1989)CrossRefzbMATHGoogle Scholar
  43. [Has06]
    K. Hasegawa, A note on compact solvmanifolds with Kähler structures. Osaka J. Math. 43(1), 131–135 (2006)MathSciNetzbMATHGoogle Scholar
  44. [Hat60]
    A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 8(2), 289–331 (1960)MathSciNetzbMATHGoogle Scholar
  45. [HL83]
    F.R. Harvey, H.B. Lawson Jr., An intrinsic characterization of Kähler manifolds. Invent. Math. 74(2), 169–198 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  46. [HMT11]
    R.K. Hind, C. Medori, A. Tomassini, On non-pure forms on almost complex manifolds. Proc. Am. Math. Soc. (2011 to appear)Google Scholar
  47. [Huy05]
    D. Huybrechts, Complex Geometry. Universitext (Springer, Berlin, 2005)zbMATHGoogle Scholar
  48. [Kod64]
    K. Kodaira, On the structure of compact complex analytic surfaces. I. Am. J. Math. 86, 751–798 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  49. [KS60]
    K. Kodaira, D.C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. (2) 71(1), 43–76 (1960)Google Scholar
  50. [Lam99]
    A. Lamari, Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble) 49(1, vii, x), 263–285 (1999)Google Scholar
  51. [Lee04]
    J. Lee, Family Gromov-Witten invariants for Kähler surfaces. Duke Math. J. 123(1), 209–233 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  52. [Lej10]
    M. Lejmi, Stability under deformations of extremal almost-Kähler metrics in dimension 4. Math. Res. Lett. 17(4), 601–612 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  53. [Lin13]
    Y. Lin, Symplectic harmonic theory and the Federer-Fleming deformation theorem, arXiv:1112.2442v2 [math.SG], 2013Google Scholar
  54. [LT12]
    T.-J. Li, A. Tomassini, Almost Kähler structures on four dimensional unimodular Lie algebras. J. Geom. Phys. 62 (7), 1714–1731 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  55. [LZ09]
    T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds. Commun. Anal. Geom. 17(4), 651–683 (2009)CrossRefzbMATHGoogle Scholar
  56. [LZ11]
    T.-J. Li, W. Zhang, J-symplectic cones of rational four manifolds, preprint, 2011Google Scholar
  57. [Mal49]
    A.I. Mal’tsev, On a class of homogeneous spaces. Izv. Akad. Nauk SSSR Ser. Mat. 13, 9–32 (1949). Translation in Am. Math. Soc. Translation 1951(39), 33 pp. (1951)Google Scholar
  58. [Mic82]
    M.L. Michelsohn, On the existence of special metrics in complex geometry. Acta Math. 149(3–4), 261–295 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  59. [Mil76]
    J. Milnor, Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  60. [Miy74]
    Y. Miyaoka, Kähler metrics on elliptic surfaces. Proc. Jpn. Acad. 50(8), 533–536 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  61. [MPPS06]
    C. Maclaughlin, H. Pedersen, Y.S. Poon, S. Salamon, Deformation of 2-step nilmanifolds with abelian complex structures. J. Lond. Math. Soc. (2) 73(1), 173–193 (2006)Google Scholar
  62. [MT00]
    M. Migliorini, A. Tomassini, Local calibrations of almost complex structures. Forum Math. 12(6), 723–730 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  63. [MT11]
    C. Medori, A. Tomassini, On small deformations of paracomplex manifolds. J. Noncommut. Geom. 5(4), 507–522 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  64. [Nak75]
    I. Nakamura, Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, 85–112 (1975)zbMATHGoogle Scholar
  65. [Nom54]
    K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. (2) 59, 531–538 (1954)Google Scholar
  66. [Pet86]
    Th. Peternell, Algebraicity criteria for compact complex manifolds. Math. Ann. 275(4), 653–672 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  67. [Pop09]
    D. Popovici, Limits of projective manifolds under holomorphic deformations, arXiv:0910.2032v1 [math.AG], 2009Google Scholar
  68. [Pop13]
    D. Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics. Invent. Math., 1–20 (2013) (English), Online First,
  69. [Rol08]
    S. Rollenske, The Frölicher spectral sequence can be arbitrarily non-degenerate. Math. Ann. 341(3), 623–628 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  70. [Ros12a]
    F.A. Rossi, On deformations of D-manifolds and CR D-manifolds. J. Geom. Phys. 62(2), 464–478 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  71. [Ros13]
    F.A. Rossi, D-complex structures on manifolds: cohomological properties and deformations, Ph.D. Thesis, Università di Milano Bicocca, 2013,
  72. [Sil96]
    A. Silva, \(\partial \overline{\partial }\)-closed positive currents and special metrics on compact complex manifolds, in Complex Analysis and Geometry (Trento, 1993). Lecture Notes in Pure and Applied Mathematics, vol. 173 (Marcel Dekker, New York, 1996), pp. 377–441Google Scholar
  73. [Siu83]
    Y.T. Siu, Every K3 surface is Kähler. Invent. Math. 73(1), 139–150 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  74. [ST10]
    J. Streets, G. Tian, A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. IMRN 2010(16), 3101–3133 (2010)MathSciNetzbMATHGoogle Scholar
  75. [Sul76]
    D.P. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math. 36(1), 225–255 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  76. [Tau95]
    C.H. Taubes, The Seiberg-Witten and Gromov invariants. Math. Res. Lett. 2(2), 221–238 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  77. [Tau11]
    C.H. Taubes, Tamed to compatible: symplectic forms via moduli space integration. J. Symplectic Geom. 9(2), 161–250 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  78. [Tom02]
    A. Tomassini, Some examples of non calibrable almost complex structures. Forum Math. 14(6), 869–876 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  79. [Tom08]
    A. Tomasiello, Reformulating supersymmetry with a generalized Dolbeault operator. J. High Energy Phys. 2, 010, 25 (2008)Google Scholar
  80. [TW11a]
    V. Tosatti, B. Weinkove, The Calabi-Yau equation on the Kodaira-Thurston manifold. J. Inst. Math. Jussieu 10 (2), 437–447 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  81. [TW11b]
    V. Tosatti, B. Weinkove, The Calabi-Yau equation, symplectic forms and almost complex structures, in Geometry and Analysis. No. 1, Advanced Lectures in Mathematics (ALM), vol. 17 (International Press, Somerville, 2011), pp. 475–493Google Scholar
  82. [TWY08]
    V. Tosatti, B. Weinkove, S.-T. Yau, Taming symplectic forms and the Calabi-Yau equation. Proc. Lond. Math. Soc. (3) 97 (2), 401–424 (2008)Google Scholar
  83. [TY12a]
    L.-S. Tseng, S.-T. Yau, Cohomology and Hodge theory on symplectic manifolds: I. J. Differ. Geom. 91(3), 383–416 (2012)MathSciNetzbMATHGoogle Scholar
  84. [Voi02]
    C. Voisin, Théorie de Hodge et géométrie algébrique complexe, in Cours Spécialisés [Specialized Courses], vol. 10 (Société Mathématique de France, Paris, 2002)Google Scholar
  85. [Wan54]
    H.-C. Wang, Complex parallisable manifolds. Proc. Am. Math. Soc. 5(5), 771–776 (1954)CrossRefzbMATHGoogle Scholar
  86. [Wei58]
    A. Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267 (Hermann, Paris, 1958)Google Scholar
  87. [Wei07]
    B. Weinkove, The Calabi-Yau equation on almost-Kähler four-manifolds. J. Differ. Geom. 76(2), 317–349 (2007)MathSciNetzbMATHGoogle Scholar
  88. [Wu06]
    C.-C. Wu, On the geometry of superstrings with torsion, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.), Harvard University, 2006Google Scholar
  89. [Yan96]
    D. Yan, Hodge structure on symplectic manifolds. Adv. Math. 120(1), 143–154 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  90. [Yau77]
    S.-T. Yau, Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74(5), 1798–1799 (1977)CrossRefzbMATHGoogle Scholar
  91. [Yau78]
    S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)CrossRefzbMATHGoogle Scholar
  92. [Zha13]
    W. Zhang, From Taubes currents to almost Kähler forms. Math. Ann. 356(3), 969–978Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniele Angella
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly

Personalised recommendations