Skip to main content

Transversal Flow Field of Particle-Laden Linear Fluids

  • Chapter
  • First Online:
Developments in the Flow of Complex Fluids in Tubes
  • 863 Accesses

Abstract

Mean secondary flows in straight tubes of non-circular cross section turbulent driven of Newtonian fluids by constant pressure gradients are discussed in their historical context as well as in terms of the most recent findings. The fundamental issues and their impact on industrial processes, in particular on processes involving particle laden flows are reviewed. Similarities with the driving mechanism of secondary laminar flows of viscoelastic fluids, criteria for the existence of secondary flows, and general classification and closure approximations for homogeneous and wall-bounded flows are discussed.

The rheology of dilute, semi-dilute, and concentrated non-Brownian suspensions is reviewed. Computing shear viscosity in different concentration regimes and recent progress in determining the normal stress functions of semi-dilute and concentrated non-colloidal suspensions are summarized. Macroscopic constitutive models for suspension flow, shear-induced and stress-induced particle migration, applications to Stokesian dynamics simulations (SDS), and efforts to improve the predictions through SDS both in unbounded and bounded flows are discussed together with challenges in shear-driven migration of non-colloidal concentrated suspensions. The complex nature and sometimes contradictory behavior reported in the literature make it challenging to construct a theoretical model. Efforts to understand the motion of particles in viscoelastic suspending media are summarized and recent research on secondary field in Poiseuille flow of shear-driven migration of suspensions is discussed together with secondary field in single-phase and multiphase turbulent flow of suspensions in tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siginer DA (2013) Stability of non-linear constitutive formulations for viscoelastic fluids. Springer, New York, NY

    Google Scholar 

  2. Speziale CG (1982) On turbulent secondary flows in pipes of non-circular cross section. Int J Eng Sci 7:863–872

    Google Scholar 

  3. Nikuradse J (1930) Turbulente Stromung in Nicht-Kreisformigen Rohren. Ingenieur Archiv 1:306–332

    MATH  Google Scholar 

  4. Criminale WO Jr, Ericksen JL, Filbey GL (1957) Steady shear flow of non-Newtonian fluids. Arch Rat Mech Anal 1(1):410–417

    MathSciNet  Google Scholar 

  5. Truesdell C, Noll W (1992) The non-linear field theories of mechanics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  6. Nikuradse J (1926) Untorsuchungen iiber die Geschwindigteitsverteilung in turbulenten Stromungen. Thesis, Gottingen, V.D.I.-Forsch, p. 281.

    Google Scholar 

  7. Prandtl L (1927) Über die ausgebildete turbulenz. Verfahren diese Zweite Internationale Kongress für Technische Mechanik, Zürich [“Turbulent flow,” NACA Technical Memo 435, pp. 62–75]

    Google Scholar 

  8. Prandtl L (1927) Über den Reibungswiderstand stromenderluft, Ergeb. Aerodyn. Versuch., Gottingen, III series

    Google Scholar 

  9. Einstein HA, Li H (1958) Secondary currents in straight channels. Trans Am Geophys Union 39:1085–1088

    Google Scholar 

  10. Brundrett E, Baines WD (1964) The production and diffusion of vorticity in duct flow. J Fluid Mech 19(3):375–394

    MATH  Google Scholar 

  11. Perkins HJ (1970) The formation of streamwise vorticity in turbulent flow. J Fluid Mech 44:721–740

    MATH  Google Scholar 

  12. Huser A (1992) Direct numerical simulation of turbulent flow in a square duct. PhD thesis, Department of Aerospace Engineering Sciences, University of Colorado

    Google Scholar 

  13. Hoagland LC (1960) Fully developed turbulent flow in straight rectangular ducts; secondary flow, its cause and effect on the primary flow. ScD thesis, Department of Mechanical Engineering, MIT

    Google Scholar 

  14. Leutheusser HJ (1963) Turbulent flow in rectangular ducts. J Hydraul Div 89:1–19

    Google Scholar 

  15. Gessner FB, Jones JB (1965) On some aspects of fully-developed turbulent flow in rectangular channels. J Fluid Mech 23:689–713

    Google Scholar 

  16. Launder BE, Ying WM (1972) Secondary flows in ducts of square cross-section. J Fluid Mech 54(2):289–295

    Google Scholar 

  17. Hinze JO (1973) Experimental investigation on secondary currents in the turbulent flow through a straight conduit. Appl Sci Res 28:453–465

    Google Scholar 

  18. Demuren AO, Rodi W (1984) Calculation of turbulence-driven secondary motion in non-circular ducts. J Fluid Mech 140:189–222

    MATH  Google Scholar 

  19. Nagata K, Hunt JCR, Sakai Y, Wong H (2011) Distorted turbulence and secondary flow near right-angled plates. J Fluid Mech 668:446–479

    MATH  MathSciNet  Google Scholar 

  20. Bradshaw P (1987) Turbulent secondary flows. Annu Rev Fluid Mech 19:53

    Google Scholar 

  21. Mellor GL, Herring HJ (1973) A survey of the mean turbulent field closure models. AIAA J 11(5):590–599

    MATH  Google Scholar 

  22. Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds stress turbulence closure. J Fluid Mech 68:537–566

    MATH  Google Scholar 

  23. Hinze JO (1975) Turbulence. McGraw-Hill, New York, NY

    Google Scholar 

  24. Speziale CG (1987) On non-linear K-l and K-ε models of turbulence. J Fluid Mech 178:459–475

    MATH  Google Scholar 

  25. Yoshizawa A (1984) Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys Fluids 27(6):1377–1388

    MATH  Google Scholar 

  26. Yoshizawa A (1987) Statistical modeling of a transport equation for the kinetic energy dissipation rate. Phys Fluids 30(3):628–632

    MathSciNet  Google Scholar 

  27. Shimomura Y, Yoshizawa A (1986) Statistical analysis of anisotropic turbulent viscosity in a rotating system. J Phys Soc Jpn 55(6):1904–1917

    Google Scholar 

  28. Nisizima S, Yoshizawa A (1987) Turbulent channel and couette flows using an anisotropic k-epsilon model. AIAA J 25(3):414–420

    MATH  Google Scholar 

  29. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51

    MATH  MathSciNet  Google Scholar 

  30. Rubinstein R, Barton JM (1990) Non-linear Reynolds stress models and the renormalization group. Phys Fluids 2(8):1472–1477

    MATH  Google Scholar 

  31. Speziale CG, So RMC, Younis BA (1992) On the prediction of turbulent secondary flows, NASA-ICASE Report No. 92-57

    Google Scholar 

  32. Lai YG, So RMC (1990) On near-wall turbulent flow modeling. J Fluid Mech 221:641–673

    MATH  Google Scholar 

  33. Speziale CG (1991) Analytical methods for the development of Reynolds stress closures in turbulence. Annu Rev Fluid Mech 23:107–157

    MathSciNet  Google Scholar 

  34. Kolmogorov AN (1941) Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30:299–303

    Google Scholar 

  35. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam

    MATH  Google Scholar 

  36. Einstein A (1906) Eine neue Bestimmung der Moleküledimensionen. Annal Phys 19:289–306

    MATH  Google Scholar 

  37. Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküledimensionen. Annal Phys 34:591–592

    MATH  Google Scholar 

  38. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York, NY

    MATH  Google Scholar 

  39. Batchelor GK, Green JT (1972) The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J Fluid Mech 56:375–400

    MATH  Google Scholar 

  40. Batchelor GK, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order c2. J Fluid Mech 56:401–427

    MATH  Google Scholar 

  41. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117

    MathSciNet  Google Scholar 

  42. Krieger IM (1963) A dimensional approach to colloid rheology. Trans Soc Rheol 7:101–110

    Google Scholar 

  43. Krieger IM (1972) Rheology of monodisperse lattice. Adv Colloid Interface Sci 3:111–136

    Google Scholar 

  44. Stickell JJ, Powell RL (2005) Fluid mechanics and rheology of dense suspensions. Annu Rev Fluid Mech 37:129–149

    Google Scholar 

  45. Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439

    Google Scholar 

  46. Morris JF, Boulay F (1999) Curvilinear flows of non-colloidal suspensions: the role of normal stresses. J Rheol 43(5):1213–1237

    Google Scholar 

  47. Zarraga IE, Hill DA, Leighton DT (2000) The characterization of the total stress of concentrated suspensions of non-colloidal spheres in Newtonian fluids. J Rheol 44(2):185–220

    Google Scholar 

  48. Parsi F, Gadala-Maria F (1987) Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J Rheol 31(8):725–732

    Google Scholar 

  49. Brady JF, Morris JF (1997) Microstructure of strongly-sheared suspensions and its impact on rheology and diffusion. J Fluid Mech 348:103–139

    MATH  Google Scholar 

  50. Wilson HJ (2005) An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow. J Fluid Mech 534:97–114

    MATH  MathSciNet  Google Scholar 

  51. Sierou A, Brady JF (2001) Accelerated Stokesian dynamics simulations. J Fluid Mech 448:115–146

    MATH  Google Scholar 

  52. Sierou A, Brady JF (2002) Rheology and microstructure in concentrated non-colloidal suspensions. J RheolJ Rheol 46(5):1031–1056

    Google Scholar 

  53. Boyer F, Pouliquen O, Guazzelli É (2011) Dense suspensions in rotating-rod flows: normal stresses and particle migration. J Fluid Mech 686:5–25

    MATH  Google Scholar 

  54. Coutourier É, Boyer F, Pouliquen O, Guazzelli É (2011) Suspensions in a tilted trough: second normal stress difference. J Fluid Mech 686:26–39

    Google Scholar 

  55. Dbouk T, Lobry L, Lemaire E (2013) Normal stresses in concentrated non-Brownian suspensions. J Fluid Mech 715(1):239–272

    MATH  MathSciNet  Google Scholar 

  56. Singh A, Nott PR (2003) Experimental measurements of the normal stresses in sheared Stokesian suspensions. J Fluid Mech 490:293–320

    MATH  Google Scholar 

  57. Joseph DD, Fosdick RL (1973) The free surface on a liquid between cylinders rotating at different speeds, Part I. Arch Ration Mech Anal 49(5):321–380

    MATH  MathSciNet  Google Scholar 

  58. Joseph DD, Beavers GS, Fosdick RL (1973) The free surface on a liquid between cylinders rotating at different speeds, Part II. Arch Ration Mech Anal 49(5):381–401

    MATH  MathSciNet  Google Scholar 

  59. Beavers GS, Joseph DD (1975) The rotating-rod viscometer. J Fluid Mech 69(3):475–511

    MATH  MathSciNet  Google Scholar 

  60. Serrin J (1959) Mathematical principles of classical fluid mechanics (monograph). In: Truesdell C (ed) Handbuch der Physik, vol VIII/1. Springer, Berlin, pp 125–263

    Google Scholar 

  61. Joseph DD (1973) Domain perturbations: the higher order theory of infinitesimal water waves. Arch Ration Mech Anal 51(4):295–303

    MATH  Google Scholar 

  62. Siginer DA (1984) Free surface on a simple fluid between rotating eccentric cylinders, Part I: analytical solution. J Non Newton Fluid Mech 15:93–109

    MATH  Google Scholar 

  63. Siginer DA, Beavers GS (1984) Free surface on a simple fluid between rotating eccentric cylinders, Part II: experiments. J Non Newton Fluid Mech 15:109–122

    Google Scholar 

  64. Siginer DA (1984) General Weissenberg effect in free surface rheometry, Part I: analytical considerations. J Appl Math Phys 35(4):545–558

    MATH  Google Scholar 

  65. Siginer DA (1984) General Weissenberg effect in free surface rheometry, Part II: experiments. J Appl Math Phys 35(5):618–633

    Google Scholar 

  66. Wineman AS, Pipkin AC (1966) Slow viscoelastic flow in tilted troughs. Acta Mech 2(1):104–115

    Google Scholar 

  67. Tanner RI (1970) Some methods for estimating the normal stress functions in viscometric flows. Trans Soc Rheol 14(4):483–508

    MATH  Google Scholar 

  68. Sturges L, Joseph DD (1975) Slow motion and viscometric motion, Part V: the free surface on a simple fluid flowing down a tilted trough. Arch Ration Mech Anal 59(4):359–387

    MATH  MathSciNet  Google Scholar 

  69. Siginer DA (1991) Viscoelastic swirling flow with free surface in cylindrical chambers. Rheol Acta 30(2):159–175

    MathSciNet  Google Scholar 

  70. Siginer DA, Knight RW (1993) Swirling free surface flow in cylindrical containers. J Eng Math 27:245–264

    MATH  MathSciNet  Google Scholar 

  71. Deboeuf A, Gauthier G, Martin J, Yurkovetsky Y, Morris JF (2009) Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys Rev Lett 102:108301

    Google Scholar 

  72. Prasad D, Kytomaa H (1995) Particle stress and viscous compaction during shear of dense suspensions. Int J Multiphas Flow 21(5):775

    MATH  Google Scholar 

  73. Phung TN, Brady JF, Bossis G (1996) Stokesian dynamics simulation of Brownian suspensions. J Fluid Mech 313:181–207

    Google Scholar 

  74. Yurkovetsky Y, I (1997) Statistical mechanics of bubbly liquids. II. Behavior of sheared suspensions of non-Brownian particles, PhD thesis, California Institute of Technology

    Google Scholar 

  75. Garland S, Gauthier G, Martin J, Morris J (2013) Normal stress measurements in sheared non-Brownian suspensions. J Rheol 57(1):71–89

    Google Scholar 

  76. Segré G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210

    Google Scholar 

  77. Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech 14:115–135

    MATH  Google Scholar 

  78. Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in poiseuille flow Part 2. Experimental results and interpretation. J Fluid Mech 14:136–157

    Google Scholar 

  79. Gadala-Maria F, Acrivos A (1980) Shear induced structure in a concentrated suspension of solid spheres. J Rheol 24(6):799–815

    Google Scholar 

  80. Eckstein EC, Bailey DG, Shapiro AH (1977) Self-diffusion of particles in shear flow of a suspension. J Fluid Mech 79:191–208

    Google Scholar 

  81. Leighton D, Acrivos A (1987) Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J Fluid Mech 177:109–131

    Google Scholar 

  82. Nott PR, Brady JF (1994) Pressure-driven flow of suspensions: simulation and theory. J Fluid Mech 275:157–199

    MATH  Google Scholar 

  83. Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech 155:105–129

    Google Scholar 

  84. Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157

    Google Scholar 

  85. Durlofsky LJ, Brady JF (1989) Dynamic simulation of bounded suspensions of hydrodynamically interacting particles. J Fluid Mech 200:39–67

    MATH  MathSciNet  Google Scholar 

  86. Hampton RE, Mammoli AA, Graham AL, Tetlow N, Altobelli SA (1997) Migration of particles undergoing pressure-driven flow in a circular conduit. J Rheol 41(3):621–640

    Google Scholar 

  87. Phan-Thien N, Fang Z (1996) Entrance length and pulsatile flows of a model concentrated suspension. J Rheol 40(4):521–529

    Google Scholar 

  88. Karnis A, Goldsmith HL, Mason SG (1966) The kinetics of flowing dispersions: concentrated suspensions of rigid particles. J Colloid Interface Sci 22(6):531–553

    Google Scholar 

  89. Koh CJ (1991) Experimental and theoretical studies on two-phase flows. PhD thesis, California Institute of Technology

    Google Scholar 

  90. Koh CJ, Hookham P, Leal LG (1994) An experimental investigation of concentrated suspension flows in a rectangular channel. J Fluid Mech 266:1–32

    Google Scholar 

  91. Abbott JR, Tetlow N, Graham AL, Altobelli SA, Fukushima E, Mondy LA, Stephens ST (1991) Experimental observations of particle migration in concentrated suspensions: couette flow. J Rheol 35(5):773–795

    Google Scholar 

  92. Hookham P (1986) Concentration and velocity measurements in suspensions flowing through a rectangular channel. PhD thesis, California Institute of Technology

    Google Scholar 

  93. Sinton SW, Chow AW (1991) NMR flow imaging of fluids and solid suspensions in Poiseuille flow. J Rheol 35(5):735–773

    Google Scholar 

  94. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive model for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluid A 4:30–40

    MATH  Google Scholar 

  95. Chow AW, Sinton SW, Iwamiya JH, Stephens TS (1994) Shear-induced migration in couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys Fluid A 6:2561–2676

    Google Scholar 

  96. Richardson JF, Zaki WN (1954) Sedimentation and fluidization: Part I. Trans Inst Chem Eng 32:35–47

    Google Scholar 

  97. MacDonald MJ, Muller SJ (1996) Experimental study of shear-induced migration of polymers in dilute solutions. J Rheol 40(2):259–283

    Google Scholar 

  98. Mills P, Snabre P (1995) Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration. J Phys II 5:1597–1608

    Google Scholar 

  99. Subia SR, Ingber MS, Mondy LA, Altobelli SA, Graham AL (1998) Modelling of concentrated suspensions using a continuum constitutive equation. J Fluid Mech 373:193–219

    MATH  Google Scholar 

  100. Krishnan GP, Beimfohr S, Leighton DT (1996) Shear-induced radial segregation in bidisperse suspensions. J Fluid Mech 321:371–393

    Google Scholar 

  101. L’Huillier D (2009) Migration of rigid particles in non-brownian viscous suspensions. Phys Fluids 21:023302

    Google Scholar 

  102. Nott PR, Guazzelli E, Pouliquen O (2011) The suspension balance model revisited. Phys Fluids 23:043304

    Google Scholar 

  103. Blanc F, Lemaire E, Meunier A, Peters F (2013) Microstructure in sheared Non-Brownian concentrated suspensions. J Rheol 57(1):273–293

    Google Scholar 

  104. Brady JF (2001) Computer simulation of viscous suspensions. Chem Eng Sci 56(9):2921–2926

    Google Scholar 

  105. Dratler DI, Schowalter WR (1996) Dynamic simulation of suspensions of non-Brownian hard spheres. J Fluid Mech 325:53–77

    MATH  Google Scholar 

  106. Drazer G, Koplik J, Khusid B, Acrivos A (2002) Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions. J Fluid Mech 460:307–335

    MATH  MathSciNet  Google Scholar 

  107. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    MathSciNet  Google Scholar 

  108. Hill RJ, Koch DL, Ladd AJC (2001) The first effects of fluid inertia on flows in ordered and random arrays of spheres. J Fluid Mech 448:213–241

    MATH  MathSciNet  Google Scholar 

  109. Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier fictitious domain method for particulate flows. Int J Multiphas Flow 25(5):755–794

    MATH  Google Scholar 

  110. Singh P, Hesla TI, Joseph DD (2003) Distributed Lagrange multiplier method for particulate flows with collisions. Int J Multiphas Flow 29(3):495–509

    MATH  Google Scholar 

  111. Nguyen N-Q, Ladd AJC (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66:046708

    Google Scholar 

  112. Kromkamp J, van den Ende D, Kandhai D, van der Sman R, Boom R (2006) Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in couette flow. Chem Eng Sci 61(2):858–873

    Google Scholar 

  113. Maxey MR, Patel BK (2001) Localized force representations for particles sedimenting in stokes flow. Int J Multiphas Flow 27(9):1603–1626

    MATH  Google Scholar 

  114. Lomholt S, Maxey MR (2003) Force-coupling method for particulate two-phase flow: stokes flow. J Comput Phys 184(2):381–405

    MATH  Google Scholar 

  115. Dance SL, Maxey MR (2003) Particle density stratification in transient sedimentation. Phys Rev E 68:031403

    Google Scholar 

  116. Yeo K, Maxey MR (2010) Simulation of concentrated suspensions using the force-coupling method. J Comput Phys 229(6):2401–2421

    MATH  MathSciNet  Google Scholar 

  117. Yeo K, Maxey MR (2010) Dynamics of concentrated suspensions of non-colloidal particles in couette flow. J Fluid Mech 649:205–231

    MATH  MathSciNet  Google Scholar 

  118. Laun HM (1994) Normal stresses in extremely shear thickening polymer dispersions. J Non Newton Fluid Mech 54:87–108

    Google Scholar 

  119. Tehrani M (1996) An experimental study of particle migration in pipe flow of viscoelastic fluids. J Rheol 40(6):1057–1077

    Google Scholar 

  120. Karnis A, Mason SG (1966) Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans Soc Rheol 10:571–592

    Google Scholar 

  121. Gauthier F, Goldsmith HL, Mason SG (1971) Particle motions in non-Newtonian media II. Poiseuille flow. Trans Soc Rheol 15:297–330

    Google Scholar 

  122. Jefri MA, Zahed AH (1989) Elastic and viscous effects on particle migration in plane Poiseuille flow. J Rheol 33(5):691–708

    Google Scholar 

  123. Binous H, Phillips RJ (1999) Dynamic simulation of one and two particles sedimenting in a viscoelastic suspension of FENE dumbbells. J Nonnewton Fluid Mech 83:93–130

    MATH  Google Scholar 

  124. Lunsmann WJ, Genieser L, Armstrong RC, Brown RA (1993) Finite element analysis of steady viscoelastic flow around a sphere in a tube: calculations with constant-viscosity models. J Nonnewton Fluid Mech 48(1–2):63–99

    MATH  Google Scholar 

  125. Walters K, Tanner RI (1992) The motion of a sphere through an elastic liquid. In: Chhabra RP, Dekee D (eds) Transport processes in bubbles, drops and particles. Hemisphere, New York, NY

    Google Scholar 

  126. Solomon MJ, Muller SJ (1996) Flow past a sphere in polystyrene-based boger fluids: the effect on the drag coefficient of finite extensibility, solvent quality and polymer molecular weight. J Nonnewton Fluid Mech 62(1):81–94

    Google Scholar 

  127. Chilcott MD, Rallison JM (1988) Creeping flow of dilute polymer solutions past cylinders and spheres. J Nonnewton Fluid Mech 29:381–432

    MATH  Google Scholar 

  128. Harlen OJ (1990) High Deborah number flow of a dilute polymer solution past a sphere falling along the axis of a cylindrical tube. J Nonnewton Fluid Mech 37(2–3):157–173

    MATH  Google Scholar 

  129. Tiefenbruck G, Leal LG (1980) A note on rods falling near a vertical wall in a viscoelastic liquid. J Nonnewton Fluid Mech 6(3–4):201–218

    Google Scholar 

  130. Chiba K, Song K-W, Horikawa A (1986) Motion of a slender body in quiescent polymer solutions. Rheol Acta 25(4):380–388

    Google Scholar 

  131. Liu YJ, Joseph DD (1993) Sedimentation of particles in polymer solutions. J Fluid Mech 255:565–595

    Google Scholar 

  132. Kim S (1986) The motion of ellipsoids in a second-order fluid. J Nonnewton Fluid Mech 21(2):255–269

    MATH  Google Scholar 

  133. Brunn P (1977) Interaction of spheres in a viscoelastic fluid. Rheol Acta 16(5):461–475

    MATH  Google Scholar 

  134. Riddle MJ, Narvaez C, Bird RB (1977) Interactions between two spheres falling along their line of centers in a viscoelastic fluid. J Nonnewton Fluid Mech 2(1):23–35

    Google Scholar 

  135. Joseph DD, Liu YJ, Poletto M, Feng J (1994) Aggregation and dispersion of spheres falling in viscoelastic liquids. J Non Newton Fluid Mech 54:45

    Google Scholar 

  136. Gheissary G, van den Brule BHAA (1996) Unexpected phenomena observed in particle settling in non-Newtonian media. J Nonnewton Fluid Mech 67:1–18

    Google Scholar 

  137. Phillips RJ (1996) Dynamic simulation of hydrodynamically interacting spheres in a quiescent second-order fluid. J Fluid Mech 315:345–365

    MATH  Google Scholar 

  138. Binous H, Phillips RJ (1999) The effect of sphere-wall interactions on particle motion in a viscoelastic suspension of FENE dumbbells. J Nonnewton Fluid Mech 85:63–92

    MATH  Google Scholar 

  139. Blake JR (1971) A note on the image system for a stokeslet in a no-slip boundary. Proc Camb Phil Soc 70:303–310

    MATH  Google Scholar 

  140. Joseph DD, Liu YJ (1993) Orientation of long bodies falling in a viscoelastic liquid. J Rheol 37:961–983

    MathSciNet  Google Scholar 

  141. Huang PY, Feng J, Hu HH, Joseph DD (1997) Direct simulation of the motion of solid particles in couette and Poiseuille flows of viscoelastic fluids. J Fluid Mech 343:73–94

    MATH  MathSciNet  Google Scholar 

  142. Huang PY, Joseph DD (2000) Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids. J Non Newton Fluid Mech 90:159–185

    MATH  Google Scholar 

  143. Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Eng 381:63–87

    MATH  Google Scholar 

  144. Ramachandran A, Leighton DT (2008) The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions. J Fluid Mech 603:207–243

    MATH  MathSciNet  Google Scholar 

  145. Zrehen A, Ramachandran A (2013) Demonstration of secondary currents in the pressure-driven flow of a concentrated suspension through a square conduit. Phys Rev Lett 110:018306

    Google Scholar 

  146. Belt RJ, Daalmans ACLM, Portela LM (2011) Experimental study of particle driven secondary flow in turbulent pipe flows. J Fluid Mech 709:1–36

    Google Scholar 

  147. Hetsroni G (1989) Particle-turbulence interaction. Int J Multiphas Flow 15(5):735–746

    Google Scholar 

  148. Gore RA, Crowe CT (1991) Modulation of turbulence by a dispersed phase. J Fluid Eng 113(2):304–307

    Google Scholar 

  149. Huber N, Sommerfeld M (1994) Characterization of the cross-sectional particle concentration distribution in pneumatic conveying systems. Powder Tech 79:191–210

    Google Scholar 

  150. Lee SL, Durst F (1982) On the motion of particles in turbulent duct flows. Int J Multiphas Flow 8(2):125–146

    Google Scholar 

  151. Sommerfeld M (1990) Numerical simulation of the particle dispersion in turbulent flow: the importance of particle lift forces and particle/wall collision models. In: Celik I, Hughes D, Crowe CT, Lankford D (eds) Numerical methods for multiphase flows, vol 91. ASME, New York, NY, pp 1–18

    Google Scholar 

  152. Saffmann PG (1965) The lift on a small sphere in a shear flow. J Fluid Mech 22:385–400

    Google Scholar 

  153. Mei R (1992) An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int J Multiphas Flow 18(1):145–147

    MATH  Google Scholar 

  154. Matsumoto S, Saito S (1970) Monte Carlo simulation of horizontal pneumatic conveying based on the rough wall model. J Chem Eng Jpn 3:223–230

    Google Scholar 

  155. Sommerfeld M (1992) Modelling of particle-wall collisions in confined gas particle flows. Int J Multiphas Flow 18(6):905–926

    MATH  Google Scholar 

  156. Tsuji Y, Shen NY, Morikawa Y (1991) Lagrangian simulation of dilute gas-solid flows in a horizontal pipe. Adv Powder Tech 2:63–81

    Google Scholar 

  157. Oesterle B, Petitjean A (1993) Simulation of particle-to-particle interactions in gas-solid flows. Int J Multiphas Flow 19(1):199–211

    MATH  Google Scholar 

  158. Huber N, Sommerfeld M (1998) Modelling and numerical calculation of dilute-phase pneumatic conveying in pipe systems. Powder Tech 99:90–101

    Google Scholar 

  159. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comp Meth Appl Mech Eng 3:269–289

    MATH  Google Scholar 

  160. Li Y, McLaughlin JB, Kontomaris K, Portela L (2001) Numerical simulation of particle-laden turbulent channel flow. Phys Fluid 13(10):2957–2967

    Google Scholar 

  161. Flores AG, Crowe KE, Griffith P (1995) Gas-phase secondary flow in horizontal, stratified and annular two-phase flow. Int J Multiphas Flow 21(2):207–221

    MATH  Google Scholar 

  162. Jayanti S, Hewitt GF, White SP (1990) Time-dependent behaviour of the liquid film in horizontal annular flow. Int J Multiphas Flow 16(6):1097–1116

    MATH  Google Scholar 

  163. Jayanti S, Hewitt GF (1996) Response of turbulent flow to abrupt changes in surface roughness and its relevance in horizontal annular flow. Appl Math Model 20:244–251

    MATH  Google Scholar 

  164. Dykhno LA, Williams LR, Hanratty TJ (1994) Maps of mean gas velocity for stratified flows with and without atomization. Int J Multiphas Flow 20(4):691–702

    MATH  Google Scholar 

  165. Williams LR, Dykhno LA, Hanratty TJ (1996) Droplet flux contributions and entrainment in horizontal gas–liquid flows. Int J Multiphas Flow 22(1):1–18

    MATH  Google Scholar 

  166. Taitel Y, Dukler A (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J 22:47–55

    Google Scholar 

  167. Van’t Westende JMC, Belt RJ, Portela LM, Mudde RF, Oliemans RVA (2007) Effect of secondary flow on droplet distribution and deposition in horizontal annular pipe flow. Int J Multiphas Flow 33(1):67–85

    Google Scholar 

  168. Lin TF, Jones OC, Lahey RT, Block RT, Murase M (1985) Film thickness distribution for gas–liquid annular flow in a horizontal pipe. Physicochem Hydrodyn 6:179–195

    Google Scholar 

  169. Young J, Leeming A (1997) A theory of particle deposition in turbulent pipe flow. J Fluid Mech 340:129–159

    MATH  Google Scholar 

  170. Suzanne C (1985) Structure de l’ Écoulement Stratifié de Gaz et de Liquide en Canal Rectangulaire, Thèse de Docteur ès Sciences, Institut National Polytechnique de Toulouse

    Google Scholar 

  171. Nordsveen M, Bertelsen AF (1997) Wave induced secondary motions in stratified duct flow. Int J Multiphas Flow 23(3):503–522

    MATH  Google Scholar 

  172. Andrews DG, McIntyre ME (1978) An exact theory of non-linear waves on a Lagrangian-mean flow. J Fluid Mech 89:609–646

    MATH  MathSciNet  Google Scholar 

  173. Langmuir I (1938) Surface motion of water induced by wind. Science 87:119–123

    Google Scholar 

  174. Nordsveen M, Bertelsen AF (1996) Waves and secondary flows in stratified gas/liquid duct flow. In: Grue J, Gjevik B, Weber JE (eds) Waves and non-linear processes in hydrodynamics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siginer, D.A. (2015). Transversal Flow Field of Particle-Laden Linear Fluids. In: Developments in the Flow of Complex Fluids in Tubes. Springer, Cham. https://doi.org/10.1007/978-3-319-02426-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02426-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02425-7

  • Online ISBN: 978-3-319-02426-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics