Skip to main content

Organic Contaminants from Industrial Wastewaters: Identification, Toxicity and Fate in the Environment

  • Chapter
  • First Online:
Pollutant Diseases, Remediation and Recycling

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 4))

Abstract

Industrialization and urbanization in the industrial nations and increasingly also in emerging and developing nations have led to an intensive and still increasing use of freshwater resources. Industries are one of the most important pollution sources and the discharged wastewaters may contain very diverse organic compound groups. Among those, lipophilic contaminants possessing functional groups which are not common in nature rank among the compounds which are most persistent. There have been strong efforts in environmental sciences for a comprehensive characterization of chemical contamination and the related impacts, in order to provide data as a basis for management measures. Here we review the current state of knowledge about organic contaminants from industrial sources. We present information about (i) the identification of organic contaminants in industrial wastewaters, (ii) how these compounds are traced in aquatic systems, and (iii) on their toxicity for aquatic organisms as observed in laboratory experiments and in the field.

Major advancements concerning this theme include the development of new analytical techniques which allow for the identification of previously unknown, emerging contaminants. Overall, these studies proved the heterogeneity of the chemical composition of industrial wastewaters, even from the same industry branches. The observed differences are related to different industrial production processes, leading to the presence of varying synthesis educts, additives, products and byproducts in the wastewaters, of which many might occur in the environment but have not yet been identified. Attempts which were made to trace industrial discharges in aquatic systems proved accordingly the presence of very heterogenic organic contaminant mixtures in the environment. We therefore conclude that our knowledge about the chemical composition of industrial wastewaters and about the occurrence of industrial organic contaminants in the environment is as yet very limited.

A further advancement was the development of a combination of chemical and toxicological methods to identify causative organic constituents including emerging contaminants which contribute to the toxicity of industrial wastewaters. Only a few studies in this field are available, although the results obtained so far are promising. Several studies demonstrated the toxic activity of field samples and relate the observed effects to the presence of industrial organic contaminants. Exposure experiments in the field proved the bioaccumulation of specific industrial contaminants and assessed the associated toxic effects. The effects of chemical contamination on aquatic invertebrate communities was shown in field studies combining chemical and biological methods, although industrial inputs were not disentangled from other pollution sources. Ecological surveys of sites contaminated by industrial point sources combined with a comprehensive chemical characterization and toxicity evaluation are missing.

Some of the identified organic contaminants are related to characteristic industrial production processes and their presence in water, sediment or biota therefore indicates the input of specific industrial wastewaters. Accordingly, these compounds can be used as industrial markers. As synthesis of the reviewed information we present a list of potential industrial marker compounds. We suggest the proceeding application of the marker concept which helps to verify the input of specific industrial wastewaters to aquatic systems and to investigate the spatial distribution of the emission. Such information is useful to disentangle different emission sources for the subsequent investigation of their potential impacts in the environment. We present further research strategies which are in our opinion promising to address the identified gaps in knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAS No.:

Unique identifier of a chemical, assigned by the Chemical Abstracts Service

CPE:

Chlorophenylethanol

DCPE:

Chlorophenylethanoldichloroethanol

DBP:

Dichlorobenzophenone

DDA:

Bis(chlorophenyl)acetic acid

DDABE:

Bis(chlorophenyl)acetic acid butylester

DDAMA:

Bis(chlorophenyl)acetic acid methylamide

DDCN:

Bis(chlorophenyl)acetonitrile

DDD:

Bis(chlorophenyl)dichloroethane

DDE:

Bis(chlorophenyl)dichloroethene

DDMU:

Bis(chlorophenyl)chloroethene

DDT:

Bis(chlorophenyl)trichloroethane

DOC:

Dissolved organic carbon

DTPA:

Diethylenetriaminepentaacetic acid

EC50 :

Concentration of a chemical which induces a defined response of 50 % of the members of a tested population after a specified test duration

EDTA:

Ethylenediaminetetraacetic acid

FIA-MS-MS:

Flow injection analysis-tandem mass spectrometry

GC/MS:

Gas chromatography–mass spectrometry

HCB:

Hexachlorobenzene

HCHs:

Hexachlorocyclohexanes

HPLC:

High performance liquid chromatography

HPLC-ED:

High performance liquid chromatography with electrochemical detection

HT-GC/MS:

High temperature-gas chromatography-mass spectrometry

IPC-ESI-MS:

Ion-pair chromatography/electrospray-mass spectrometry

LAS:

Linear alkylbenzene sulfonates

LC50 :

Concentration of a chemical required to kill 50 % of the members of a tested population after a specified test duration

LC/ESI-MSn :

Liquid chromatography-electrospray ionization/multi-stage mass spectrometry

LC/MS:

Liquid chromatography-mass spectrometry

LC/MS-MS:

Liquid chromatography tandem mass spectrometry

LC/UV:

Liquid chromatography with UV detection

MCPE:

Chlorophenylchloroethanol

PAHs:

Polycyclic aromatic hydrocarbons

PCBs:

Polychlorinated biphenyls

PCDDs:

Polychlorinated dibenzo-p-dioxins

PCDFs:

Polychlorinated dibenzofurans

PeBDE:

Pentabromodiphenyl ether

POCIS:

Polar organic chemical integrative sampler

SPE:

Solid phase extraction

SPME:

Solid phase microextraction

TLC:

Thin layer chromatography

UNEP:

United Nations Environment Programme

References

  • Ali M, Sreekrishnan TR (2001) Aquatic toxicity from puklp and paper mill effluents: a review. Adv Environ Res 5:175–196

    CAS  Google Scholar 

  • Alonso MC, Barceló D (1999) Tracing polar benzene- and naphthalene sulfonates in untreated industrial effluents and water treatment works by ion-pair chromatography-fluorescence and electrospray-mass spectrometry. Anal Chim Acta 400:211–231

    CAS  Google Scholar 

  • Alonso MC, Castillo M, Barceló D (1999) Solid-phase extraction procedure of polar benzene- and naphthalene sulfonates in industrial effluents followed by unequivocal determination with ion-pair chromatography/electrospray-mass spectrometry. Anal Chem 71:2586–2593

    CAS  Google Scholar 

  • Alvarez DA, Stackelberg PE, Petty JD, Huckins JN, Furlong ET, Zaugg SD, Meyer MT (2005) Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream. Chemosphere 61:610–622

    CAS  Google Scholar 

  • Amaral OC, Otero R, Grimalt JO, Albaiges J (1996) Volatile and semi-volatile organochlorine compounds in tap and riverine waters in the area of influence of a chlorinated organic solvent factory. Water Res 30:1876–1884

    CAS  Google Scholar 

  • Barron MG, Holder E (2003) Are exposure and ecological risks of PAHs underestimated at petroleum contaminated sites? Hum Ecol Risk Assess Int J 9:1533–1545

    CAS  Google Scholar 

  • Baumard P, Budzinski H, Michon Q, Garrigues P, Burgeot T, Bellocq J (1998) Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuar Coast Shelf Sci 47:77–90

    CAS  Google Scholar 

  • Beg MU, Al-Muzaini S, Saeed T, Jacob PG, Beg KR, Al-Bahloul M, Al-Matrouk K, Al-Obaid T, Kurian A (2001) Chemical contamination and toxicity of sediment from a coastal area receiving industrial effluents in Kuwait. Arch Environ Contam Toxicol 41:289–297

    CAS  Google Scholar 

  • Berndt J (1996) Umweltbiochemie. Gustav Fischer Verlag, Stuttgart, p 278. doi:10.1002/ange.19971090338

    Google Scholar 

  • Bhaskar M, Gnanamani A, Ganeshjeevan RJ, Chandrasekar R, Sadulla S, Radhakrishnan G (2003) Analyses of carcinogenic aromatic amines released from harmful azo colorants by streptomyces SP SS07. J Chromatogr A 1018:117–123

    CAS  Google Scholar 

  • Bigot L, Conand C, Amouroux JM, Frouin P, Bruggemann H, Grémare A (2006) Effects of industrial outfalls on tropical macrobenthic sediment communities in Reunion Island (Southwest Indian Ocean). Mar Pollut Bull 52:865–880

    CAS  Google Scholar 

  • Bilgi S, Demir C (2005) Identification of photooxidation degradation products of CI reactive orange 16 dye by gas chromatography–mass spectrometry. Dyes Pigments 66:69–76

    CAS  Google Scholar 

  • Bjørseth A, Carlberg GE, Møller M (1979) Determination of halogenated organic compounds and mutagenicity testing of spent bleach liquors. Sci Total Environ 11:197–211

    Google Scholar 

  • Blacksmith Institute and Green Cross Switzerland (2011) The world’s worst toxic pollution problems: report 2011. http://www.worstpolluted.org/2011-report.html

  • Blanchard M, Teil MJ, Ollivon D, Legenti L, Chevreuil M (2004) Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environ Res 95:184–197

    CAS  Google Scholar 

  • Bobeldijk I, Stoks PGM, Vissers JPC, Emke E, van Leerdam JA, Muilwijk B, Berbee R, Noij THM (2002) Surface and wastewater quality monitoring: combination of liquid chromatography with (geno)toxicity detection, diode array detection and tandem mass spectrometry for identification of pollutants. J Chromatogr A 970:167–181

    CAS  Google Scholar 

  • Botalova O, Schwarzbauer J (2011) Geochemical characterization of organic pollutants in effluents discharged from various industrial sources to riverine systems. Water Air Soil Pollut 221:77–98

    CAS  Google Scholar 

  • Botalova O, Schwarzbauer J, Frauenrath T, Dsikowitzky L (2009) Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Res 43:3797–3812

    CAS  Google Scholar 

  • Botalova O, Schwarzbauer J, al Sandouk N (2011) Identification and chemical characterization of specific organic indicators in the effluents from chemical production sites. Water Res 45:3653–3664

    CAS  Google Scholar 

  • Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407

    CAS  Google Scholar 

  • Brack W, Altenburger R, Ensenbach U, Möder M, Segner H, Schüürmann G (1999) Bioassay-directed identification of organic toxicants in river sediment in the industrial region of Bitterfeld (Germany) – a contribution to hazard assessment. Arch Environ Contam Toxicol 37:164–174

    CAS  Google Scholar 

  • Brack W, Kind T, Schrader S, Möder M, Schüürmann G (2003) Polychlorinated naphthalenes in sediments from the industrial region of Bitterfeld. Environ Pollut 121:81–85

    CAS  Google Scholar 

  • Brack W, Schmitt-Jansen M, Machala M, Brix R, Barceló D, Schymanski E, Streck G, Schulze T (2008) How to confirm identified toxicants in effect-directed analysis. Anal Bioanal Chem 390:1959–1973

    CAS  Google Scholar 

  • Burkhard LP, Ankley GT (1989) Identifying toxicants: NETAC’s toxicity-based approach. Environ Sci Technol 23:1438–1443

    CAS  Google Scholar 

  • Burkhard LP, Durhan EJ, Lukasewycz MT (1991) Identification of nonpolar toxicants in effluents using toxicity-based fractionation with gas chromatography/mass spectrometry. Anal Chem 63:277–283

    CAS  Google Scholar 

  • Burnison BK, Comba ME, Carey JH, Parrott J, Sherry JP (1999) Isolation and tentative identification of compound in bleached-kraft mill effluent capable of causing mixed-function oxygenase induction in fish. Environ Toxicol Chem 18:2882–2887

    CAS  Google Scholar 

  • Calabretta CJ, Oviatt CA (2008) The response of benthic macrofauna to anthropogenic stress in Narragansett Bay, Rhode Island: a review of human stressors and assessment of community conditions. Mar Pollut Bull 56:1680–1695

    CAS  Google Scholar 

  • Cao Y, Bark AW, Williams WP (1997) Analysing benthic macroinvertebrate community changes along a pollution gradient: a framework for the development of biotic indices. Water Res 31:884–892

    CAS  Google Scholar 

  • Carlberg GE, Gjøs N, Møller M, Gustavsen KO, Tveten G, Renberg L (1980) Chemical characterization and mutagenicity testing of chlorinated tryhydroxybenzenes identified in spent bleach liquors from a sulphite plant. Sci Total Environ 15:3–15

    CAS  Google Scholar 

  • Castillo M, Barceló D (1999a) Determination of organic pollutants in industrial wastewater. In: Barceló D (ed) Sample handling and trace analysis of pollutants: techniques, applications and quality assurance. Elsevier Science, Amsterdam. ISBN 13: 978-0-444-82831-6

    Google Scholar 

  • Castillo M, Barceló D (1999b) Identification of polar toxicants in industrial wastewaters using toxicity-based fractionation with liquid chromatography/mass spectrometry. Anal Chem 71:3769–3776

    CAS  Google Scholar 

  • Castillo M, Barceló D (2001) Characterisation of organic pollutants in textile wastewaters and landfill leachate by using toxicity-based fractionation methods followed by liquid and gas chromatography coupled to mass spectrometric detection. Anal Chim Acta 426:253–264

    CAS  Google Scholar 

  • Castillo M, Puig D, Barceló D (1997) Determination of priority phenolic compounds in water and industrial effluents by polymeric liquid–solid extraction cartridges using automated sample preparation with extraction columns and liquid chromatography – use of liquid – solid extraction cartridges for stabilization of phenols. J Chromatogr A 778:301–311

    CAS  Google Scholar 

  • Castillo M, Oubiña A, Barceló D (1998) Evaluation of ELISA kits followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry for the determination of organic pollutants in industrial effluents. Environ Sci Technol 32:2180–2184

    CAS  Google Scholar 

  • Castillo M, Alonso MC, Riu J, Barceló D (1999a) Identification of polar, ionic, and highly water soluble organic pollutants in untreated industrial wastewaters. Environ Sci Technol 33:1300–1306

    CAS  Google Scholar 

  • Castillo M, Barceló D, Pereira AS, Aquino Neto FR (1999b) Characterization of organic pollutants in industrial effluents by high-temperature gas chromatography–mass spectrometry. TrAC Trends Anal Chem 18:26–36

    CAS  Google Scholar 

  • Castillo M, Alonso MC, Riu J, Reinke M, Klöter G, Dizer H, Fischer B, Hansen PD, Barceló D (2001) Identification of cytotoxic compounds in European wastewaters during a field experiment. Anal Chim Acta 426:265–277

    CAS  Google Scholar 

  • Chen C-Y, Chen J-N, Chen S-D (1999) Toxicity assessment of industrial wastewater by microbial testing method. Water Sci Technol 39:139–143

    Google Scholar 

  • Chung K-T, Stevens B Jr (1993) Degradation of azo dyes by environmental microorganisms and helminthes. Environ Toxicol Chem 12:2121–2132

    CAS  Google Scholar 

  • Consejo C, Ormad MP, Sarasa J, Ovelleiro JL (2005) Treatment of wastewater coming from painting processes: application of conventional and advanced oxidation technologies. Ozone Sci Eng 27:279–286

    CAS  Google Scholar 

  • Czaplicka M (2003) Qualitative and quantitative determination of halogenated derivatives in wastewatere from coking plant. J Sep Sci 26:1067–1071

    CAS  Google Scholar 

  • Day JW Jr, Westphal A, Pratt R, Hyfield E, Rybczyk J, Kemp GP, Day JN, Marx B (2006) Effects of long-term municipal effluent discharge on the nutrient dynamics, productivity, and benthic community structure of a tidal freshwater forest wetland in Louisiana. Ecol Eng 27:242–257

    Google Scholar 

  • de Aragão Umbuzeiro G, Roubicek DA, Rech CM, Sato MIZ, Claxton LD (2004) Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures. Chemosphere 54:1589–1597

    Google Scholar 

  • De Lange HJ, Peeters ETHM, Harmsen J, Maas H, De Jonge J (2009) Seasonal variation of total and biochemically available concentrations of PAHs in a floodplain lake sediment has no effect on the benthic invertebrate community. Chemosphere 75:319–326

    Google Scholar 

  • Drzyzga O, Jannsen S, Blotevogel KH (1995) Toxicity of diphenylamine and some of its nitrated and aminated derivatives to the luminescent bacterium Vibrio fischeri. Ecotoxicol Environ Saf 31:149–152

    CAS  Google Scholar 

  • Dsikowitzky L (2002) Umweltgeochemische Charakterisierung der niedermolekularen organischen Fracht des Flusssystems Lippe. PhD thesis, RWTH Aachen University, 131 pp

    Google Scholar 

  • Dsikowitzky L, Schwarzbauer J, Littke R (2004) The anthropogenic contribution to the organic load of the Lippe river (Germany), part II: quantification of specific organic contaminants. Chemosphere 57:1289–1300

    CAS  Google Scholar 

  • Dsikowitzky L, Nordhaus I, Jennerjahn T, Khrycheva P, Sivatharshan Y, Yuwono E, Schwarzbauer J (2011) Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Mar Pollut Bull 62:851–862

    CAS  Google Scholar 

  • Eganhouse RP (1986) Long-chain alkylbenzenes: their analytical chemistry, environmental occurrence and fate. Int J Environ Anal Chem 26:241–263

    CAS  Google Scholar 

  • Eganhouse RP (1997) Molecular markers and environmental organic geochemistry: an overview. In: Eganhouse RP (ed) Molecular markers in environmental chemistry. American Chemical Society, Washington, pp 1–21

    Google Scholar 

  • Ellis DD, Jone CM, Larson RA, Schaeffer D (1982) Organic constituents of mutagenic secondary effluents from wastewater treatment plants. Arch Environ Contam Toxicol 11:373–382

    CAS  Google Scholar 

  • Fang YX, Ying GG, Zhang LJ, Zhao JL, Su HC, Yang B, Liu S (2012) Use of TIE techniques to characterize industrial effluents in the Pearl River Delta region. Ecotoxicol Environ Saf 76:143–152

    CAS  Google Scholar 

  • Farré M, Barceló D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. TrAC Trends Anal Chem 22:299–310

    Google Scholar 

  • Farré M, Pasini O, Alonso MC, Castillo M, Barceló D (2001a) Toxicity assessment of organic pollution in wastewaters using a bacterial biosensor. Anal Chim Acta 426:155–165

    Google Scholar 

  • Farré M, García MJ, Tirapu L, Ginebreda A, Barceló D (2001b) Wastewater toxicity screening of non-ionic surfactants by Toxalert® and Microtox® bioluminescence inhibition assays. Anal Chim Acta 427:181–189

    Google Scholar 

  • Fent K (2007) Ökotoxikologie. Georg Thieme Verlag, Stuttgart/New York, p 338. ISBN 978-3-13-109993-8

    Google Scholar 

  • Fichtner S, Lange FT, Schmidt W, Brauch H-J (1995) Determination of aromatic sulfonates in the river Elbe by on-line ion-pair extraction and ion-pair chromatography. Fresenius J Anal Chem 353:57–63

    CAS  Google Scholar 

  • Fiehn O, Jekel M (1996) Comparison of sorbents using semipolar to highly hydrophilic compounds for a sequential solid-phase extraction procedure of industrial wastewaters. Anal Chem 68:3083–3089

    CAS  Google Scholar 

  • Fiehn O, Vigelahn L, Kalnowski G, Reemtsma T, Jekel M (1997) Toxicity-directed fractionation of tannery wastewater using solid-phase extraction and lumenescence inhibition microtiter plates. Acta Hydrochim Hydrobiol 25:11–16

    CAS  Google Scholar 

  • Field JA, Reed RL (1996) Nonylphenol polyethoxy carboxylate metabolites of nonionic surfactants in U.S. paper mill effluents, municipal sewage treatment plant effluents, and river waters. Environ Sci Technol 30:3544–3550

    CAS  Google Scholar 

  • Fishbein L (1991) Chemicals used in the rubber industry. Sci Total Environ 101:33–43

    CAS  Google Scholar 

  • Fox ME, Whittle DM, Kaiser KLE (1977) Dehydroabietic acid accumulation by rainbow trout (Salmo gairdneri) exposed to kraft mill effluent. J Gt Lake Res 3:155–158

    CAS  Google Scholar 

  • Frische K, Schwarzbauer J, Ricking M (2011) Structural diversity of organochlorine compounds in groundwater affected by an industrial point source. Chemosphere 81:500–508

    Google Scholar 

  • Fukazawa H, Hoshino K, Shiozawa T, Matsushita H, Terao Y (2001) Identification and quantification of chlorinated bisphenol a in wastewater from wastepaper recycling plants. Chemosphere 44:973–979

    CAS  Google Scholar 

  • Games LM, Hites RA (1977) Composition, treatment efficiency, and environmental significance of dye manufacturing plant effluents. Anal Chem 49:1433–1440

    CAS  Google Scholar 

  • Giger W (2009) Hydrophilic and amphiphilic water pollutants: using advanced analytical methods for classic and emerging contaminants. Anal Bioanal Chem 393:37–44

    CAS  Google Scholar 

  • Grigoriadou A, Schwarzbauer J, Georgakopoulos A (2008) Molecular indicators for pollution source identification in marine and terrestrial water of the industrial area of Kavala city, North Greece. Environ Pollut 151:231–242

    CAS  Google Scholar 

  • Guerra R (2001) Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere 44:1737–1747

    CAS  Google Scholar 

  • Harding MJC, Davies IM, Bailey SK, Rodger GK (1999) Survey of imposex in dogwhelks (Nucella lapillus) from North Sea coasts. Appl Oranomet Chem 13:521–538

    CAS  Google Scholar 

  • Hewitt LM (2011) Effects-directed studies of pulp and paper mill effluents. In: Brack W (ed) Effect-directed analysis of complex environmental contamination, vol 15, Hdb Env chem., pp 267–284. doi:10.1007/978-3-642-18384-3_11

    Google Scholar 

  • Hewitt LM, Marvin CH (2005) Analytical methods in environmental effects-directed investigations of effluents. Mutat Res 589:208–232

    CAS  Google Scholar 

  • Hewitt LM, Kovacs TG, Dubé MG, MacLatchy DL, Martel PH, McMaster ME, Paice MG, Parrott JL, van den Heuvel MR, van der Kraak GJ (2008) Altered reproduction in fish exposed to pulp and paper mill effluents: roles of individual compounds and mill operating conditions. Environ Toxicol Chem 27:682–697

    CAS  Google Scholar 

  • Holmborn B, Voss RH, Mortimer RD, Wog A (1984) Fractionation, isolation, and characterization of Ames mutagenic compounds in kraft chlorination effluents. Environ Sci Technol 18:333–337

    Google Scholar 

  • Hynning P-A (1996) Separation, identification and quantification of compounds of industrial effluents with bioconcentration potential. Water Res 30:1103–1108

    CAS  Google Scholar 

  • Inglis GJ, Kross JE (2000) Evidence for systemic changes in the benthic fauna of tropical estuaries as a result of urbanization. Mar Pollut Bull 41:367–376

    CAS  Google Scholar 

  • James KJ, Stack MA (1997) Rapid determination of volatile organic compounds in environmentally hazardous wastewaters using solid phase microextraction. Fresenius J Anal Chem 358:833–837

    CAS  Google Scholar 

  • Jenkins RL, Angus RA, McNatt H, Howell WM, Kemppainen JA, Kirk M, Wilson EM (2001) Identification of androstenedione in a river containing paper mill effluent. Environ Toxicol Chem 20:1325–1331

    CAS  Google Scholar 

  • Jenkins RL, Wilson EM, Angus RA, Howell WM, Kirk M (2003) Androstenedione and progesterone in the sediment of a river receiving paper mill effluent. Toxicol Sci 73:53–59

    CAS  Google Scholar 

  • Jin H, Yang X, Yin D, Yu H (1999) A case study on identifying the toxicant in effluent discharged from a chemical plant. Mar Pollut Bull 39:122–125

    CAS  Google Scholar 

  • Jop KM, Kendall TZ, Askew AM, Foster RB (1991) Use of fractionation procedures and extensive chemical-analysis for toxicity identification of a chemical-plant effluent. Environ Toxicol Chem 10:981–990

    CAS  Google Scholar 

  • Judd MC, Stuthridge TR, McFarlane PN, Anderson SM, Bergman I (1996) Bleached kraft pulp mill sourced organic chemicals in sediments from a New Zealand river: Part II Tarawera river. Chemosphere 33:2209–2220

    CAS  Google Scholar 

  • Jungclaus GA, Games LM, Hltes RA (1976) Identification of trace organic compounds in tire manufacturing plant wastewaters. Anal Chem 48:1894–1896

    CAS  Google Scholar 

  • Jungclaus GA, Lopez-Avila V, Hites RA (1978) Organic compounds in an industrial wastewater: a case study of their environmental impact. Environ Sci Technol 12:88–96

    CAS  Google Scholar 

  • Kameya T, Murayama T, Urano K, Kitano M (1995) Biodegradation ranks of priority organic compounds under anaerobic conditions. Sci Total Environ 170:43–51

    CAS  Google Scholar 

  • Keith LH (1974) Chemical characterization of industrial wastewaters by gas chromatography–mass spectrometry. Sci Total Environ 3:87–102

    CAS  Google Scholar 

  • Keith LH (1976) Identification of organic compounds in unbleached treated kraft paper mill wastewaters. Environ Sci Technol 10:555–564

    CAS  Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC (2007) Food web-specific biomagnification of persistent organic pollutants. Science 317:236–239

    CAS  Google Scholar 

  • Kinae N, Hashizume T, Makita T, Tomita I, Kimura I, Kanamori H (1981a) Studies on the toxicity of pulp and paper mill effluents-I. Mutagenicity of the sediment samples derived from kraft paper mills. Water Res 15:17–24

    Google Scholar 

  • Kinae N, Hashizume T, Makita T, Tomita I, Kimura I, Kanamori H (1981b) Studies on the toxicity of pulp and paper mill effluents-II. Mutagenicity of the extracts of the liver from spotted sea trout (Nibea mitsukurii). Water Res 15:25–30

    CAS  Google Scholar 

  • Knepper TP, Karrenbrock F (2006) Pollutants as byproducts and degradation products of chemical synthesis. In: The Encyclopedia of environmental analysis Rhine, Hdb Env Chem vol 5, Part L., pp 235–254. doi:10.1007/698_5_033

  • Knepper TP, Muller J, Wulff T, Maes A (2000) Unknown bisethylisooctanollactone isomers in industrial waste water: isolation, identification and occurrence in surface water. J Chromatogr A 889:245–252

    CAS  Google Scholar 

  • Kronimus A, Schwarzbauer J, Dsikowitzky L, Heim S, Littke R (2004) Anthropogenic organic contaminants in sediments of the Lippe River, Germany. Water Res 38:3473–3484

    CAS  Google Scholar 

  • Kungolos A (2005a) Application of microbiotests and activated sludge respirometry for the evaluation of industrial wastewater toxicity. Bull Environ Contam Toxicol 74:801–808

    CAS  Google Scholar 

  • Kungolos A (2005b) Evaluation of toxic properties of industrial wastewater using on-line respirometry. J Environ Sci Health Toxic Hazard Subst Environ Eng 40:869–880

    CAS  Google Scholar 

  • Kwon J-H, Kwon J-W, Kim K, Kim Y-H (2003) Identification of a water pollutant 2-amino-6, 7-dichlorobenzothiazole, at a river near a textile industrial complex in Korea. Bull Environ Contam Toxicol 70:54–62

    CAS  Google Scholar 

  • Langston WJ, Pope ND, Jonas PJC, Nikitic C, Field MDR, Dowell B, Shillabeer N, Swarbrick RH, Brown AR (2010) Contaminants in fine sediments and their consequences for biota of the Severn Estuary. Mar Pollut Bull 61:68–82

    CAS  Google Scholar 

  • Latorre A, Rigol A, Lacorte S, Barceló D (2005) Organic compounds in paper mill wastewaters. In: The handbook of environmental chemistry vol 5, Part O. Springer Berlin Heidelberg, pp 25–51. doi:10.1007/b98606

  • Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64:187–208

    CAS  Google Scholar 

  • Lee H-B, Peart TE, Kaiser KLE (1996) Determination of nitrilotriacetic, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids in sewage treatment plant and paper mill effluents. J Chromatogr A 738:91–99

    CAS  Google Scholar 

  • Leppänen H, Marttinen S, Oikari A (1998) The use of fish bile metabolite analyses as exposure biomarkers to pulp and paper mill effluents. Chemosphere 36:2621–2634

    Google Scholar 

  • Leuenberger C, Giger W, Coney R, Graydon JW, Molnar-Kubica E (1985) Persistent chemicals in pulp mill effluents. Water Res 19:885–894

    CAS  Google Scholar 

  • Liess M, Schäfer RB, Schriever CA (2008) The footprint of pesticide stress in communities-species traits reveal community effects of toxicants. Sci Total Environ 406:484–490

    CAS  Google Scholar 

  • Loos R, Hanke G, Umlauf G, Eisenreich SJ (2007) LC–MS–MS analysis and occurrence of octyl-and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere 66:690–699

    CAS  Google Scholar 

  • Lopez-Avila V, Hites RA (1980) Organic compounds in an industrial wastewater their transport into sediments. Environ Sci Technol 14:1382–1390

    CAS  Google Scholar 

  • López-Grimau V, Guadayol JM, Griera JA, Gutiérrez MC (2006) Determination of non halogenated solvents in industrial wastewater using solid phase microextraction (SPME) and GC-MS. Lat Am Appl Res 36:49–55

    Google Scholar 

  • Mackintosh CE, Maldonado JA, Ikonomou MG, Gobas FAPC (2006) Sorption of phthalate esters and PCBs in a marine ecosystem. Environ Sci Technol 40:3481–3488

    CAS  Google Scholar 

  • Maguire RJ (1992) Occurrence and persistence of dyes in a Canadian river. Water Sci Technol 25:264–270

    Google Scholar 

  • Martel PH, Kovacs TG, O’Connor BI, Voss RH (1997) Source and identity of compounds in a thermomechanical pulp mill effluent inducing hepatic mixed-function oxygenase activity in fish. Environ Toxicol Chem 16:2375–2383

    CAS  Google Scholar 

  • Marti N, Aguado D, Segovia-Martinez L, Bouzas A, Seco A (2011) Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain. Mar Pollut Bull 62:615–625

    CAS  Google Scholar 

  • Matthiessen P, Law RJ (2002) Contaminants and their effects on estuarine and coastal organisms in the United Kingdom in the late twentieth century. Environ Pollut 120:739–757

    CAS  Google Scholar 

  • Maya-Altamira L, Eriksson E, Baun A (2008) Source analysis and hazard screening of xenobiotic organic compounds in wastewater from food-processing industries. Water Air Soil Pollut 8:505–517

    CAS  Google Scholar 

  • McKague AB (1981) Some toxic constituents of chlorination-stage effluents from bleached kraft pulp mills. Can J Fish Aquat Sci 38:739–743

    CAS  Google Scholar 

  • Meier JR, Ringhand HP, Coleman WE, Schenck KM, Munch JW, Streicher RP, Kaylor WH, Kopfler FC (1986) Mutagenic by-products from chlorination of humic acid. Environ Health Perspect 69:101–107

    CAS  Google Scholar 

  • Meriläinen P, Oikari A (2008) Uptake of organic xenobiotics by benthic invertebrates from sediment contaminated by the pulp and paper industry. Water Res 42:1715–1725

    Google Scholar 

  • Nestmann ER, Lee EGH, Matula TI, Douglas GR, Mueller JC (1980) Mutagenicity of constituents identified in pulp and paper mill effluents using the salmonella/mammalian-microsome assay. Mutat Res 79:203–212

    CAS  Google Scholar 

  • Nukaya H, Yamashita J, Tsuji K, Terao Y, Ohe T, Sawanishi H, Katsuhara T, Kiyokawa K, Tezuka M, Oguri A, Sugimura T, Wakabayashi K (1997) Isolation and chemical-structural determination of a novel aromatic amine mutagen in water from the Nishitakase River in Kyoto. Chem Res Toxicol 10:1061–1066

    CAS  Google Scholar 

  • Oguri A, Shiozawa T, Terao Y, Nukaya H, Yamashita J, Ohe T, Sawanishi H, Katsuhara T, Sugimura T, Wakabayashi K (1998) Identification of a 2-phenylbenzotriazole (PBTA)-type mutagen, PBTA-2, in water from the Nishitakase River in Kyoto. Chem Res Toxicol 11:1195–1200

    CAS  Google Scholar 

  • Oikari A, Holmbom B, Ã…näs E, Miilunpalo M, Kruzynski G, Castrén M (1985) Ecotoxicological aspects of pulp and paper mill effluents discharged to an inland water system: distribution in water, and toxicant residues and physiological effects in caged fish (Salmo gairdneri). Aquat Toxicol 6:219–239

    CAS  Google Scholar 

  • Palm H, Lammi R (1995) Fate of pulp mill organochlorines in the Gulf of Bothnia sediments. Environ Sci Technol 29:1722–1727

    CAS  Google Scholar 

  • Parrott JL, van den Heuwel MR, Hewitt LM, Baker MA, Munkittrick KR (2000) Isolation of MFO inducers from tissues of white suckers caged in bleached kraft mill effluent. Chemosphere 41:1083–1089

    CAS  Google Scholar 

  • Parvez S, Venkatamaran C, Mukherji S (2008) Toxicity assessment of organic contaminants: evaluation of mixture effects in model industrial mixtures using 2nd full factorial design. Chemosphere 73:1049–1055. The handbook of environmental chemistry, Volume 5J. Springer, Berlin/Heidelberg. doi:10.1007/698_2009_18

  • Pessala P, Schultz E, Nakari T, Joutti A, Herve S (2004) Evaluation of wastewater effluents by small-scale biotests and a fractionation procedure. Ecotoxicol Environ Saf 59:263–272

    CAS  Google Scholar 

  • Petrovic M, Eljarrat E, Lopez de Alda MJ, Barceló D (2004) Endocrine disrupting compounds and other emerging contaminants in the environment: a survey of new monitoring strategies and occurrence data. Anal Bioanal Chem 378:549–562

    CAS  Google Scholar 

  • Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments 61:121–139

    CAS  Google Scholar 

  • Postigo C, Kuster M, Villagrasa M, Rodriguez-Mozaz S, Brix R, la Farré M, Lopez de Alda M, Barceló D (2009) Liquid chromatography – mass spectrometry methods for analysis of endocrine-disrupting chemicals in wastewaters. HdB env Chem 5J, pp 227–272. The handbook of environmental chemistry, Volume 5J. Springer, Berlin/Heidelberg. doi:10.1007/698_2009_18

  • Puig A, Ormad P, Roche P, Sarasa J, Gimeno E, Ovelleiro JL (1996) Wastewater from the manufacture of rubber vulcanization accelerators: characterization, downstream monitoring and chemical treatment. J Chromatogr A 733:511–522

    CAS  Google Scholar 

  • Reemtsma T (2001) Prospects of toxicity-directed wastewater analysis. Anal Chim Acta 426:279–287

    CAS  Google Scholar 

  • Reemtsma T, Jekel M (1994) Improving GC-MS screening analysis by functional-group-related silica gel fractionation of industrial wastewater extracts. J High Resolut Chromtogr 17:589–592

    CAS  Google Scholar 

  • Reemtsma T, Jekel M (1997) Dissolved organics in tannery wastewaters and their alteration by a combined anaerobic and aerobic treatment. Water Res 31:1035–1046

    CAS  Google Scholar 

  • Reemtsma T, Fiehn O, Jekel M (1999a) A modified method for the analysis of organics in industrial wastewater as directed by their toxicity to Vibrio fischeri. Fresenius J Anal Chem 363:771–776

    CAS  Google Scholar 

  • Reemtsma T, Putschew A, Jekel M (1999b) Industrial wastewater analysis: a toxicity-directed approach. Waste Manag 19:181–188

    CAS  Google Scholar 

  • Ricciardi F, Bonnineau C, Faggiano L, Geiszinger A, Guasch H, Lopez-Doval J, Muñoz I, Proia L, Ricart M, Romanί A, Sabater S (2009) Is chemical contamination linked to the diversity of biological communities in rivers? Trends Anal Chem 28:592–602

    CAS  Google Scholar 

  • Rieger P-G, Meier H-M, Gerle M, Vogt U, Groth T, Knackmuss H-J (2002) Xenobiotics in the environment: present and future strategies to obviate the strategies to obviate the problem of biological persistence. J Biotechnol 94:101–123

    CAS  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Ã…, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C et al (2009) Planetary boundaries: exploring the sage operating space for humanity. Ecol Soc 14:32–63

    Google Scholar 

  • Rodil R, Quintana JB, Reemtsma T (2005) Liquid chromatography-tandem mass spectrometry determination of nonionic organophosphorus flame retardants and plasticizers in wastewater samples. Anal Chem 77:3083–3089

    CAS  Google Scholar 

  • Rodriguez DM, Wrobel K, Jimenez MGG (2004) Determination of 2-mercaptobenzothiazole (MBT) in tannery wastewater by high performance liquid chromatography with amperometric detection. Bull Environ Contam Toxicol 73:818–824

    CAS  Google Scholar 

  • Saiz-Salinas JI (1997) Evaluation of adverse biological effects induced by pollution in the Bilbao Estuary (Spain). Environ Pollut 96:351–359

    CAS  Google Scholar 

  • Sanchez Rojas F, Bosch Ojeda C (2005) Effluent analysis in analytical chemistry: an overview. Anal Bioanal Chem 382:978–991

    CAS  Google Scholar 

  • Santos FJ, Galceran MT, Fraisse D (1996) Application of solid-phase microextraction to the analysis of volatile organic compounds in water. J Chromatogr A 742:181–189

    CAS  Google Scholar 

  • Sarakinos HC, Bermingham N, White PA, Rasmussen JB (2000) Correspondence between whole effluent toxicity and the presence of priority substances in complex industrial effluents. Environ Toxicol Chem 19:63–71

    CAS  Google Scholar 

  • Saunders JE, Zahed KMA, Paterson DM (2007) The impact of organic pollution on the macrobenthic fauna of Dubai Creek (UAE). Mar Pollut Bull 54:1715–1723

    CAS  Google Scholar 

  • Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382:272–285

    Google Scholar 

  • Schäfer RB, Kefford BJ, Metzeling L, Liess M, Burgert S, Marchant R, Pettigrove V, Goonan P, Nugegoda D (2011) A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Sci Total Environ 409:2055–2063

    Google Scholar 

  • Schriks M, Van Leerdam JA, Van der Linden SC, Van der Burg B, Van Wezel A, De Voogt P (2010) High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in the Netherlands. Environ Sci Technol 44:4766–4774

    CAS  Google Scholar 

  • Schröder HF (1999) Substance-specific detection and pursuit of non-eliminable compounds during biological treatment of waste water from the pharmaceutical industry. Waste Manag 19:111–123

    Google Scholar 

  • Schuetzle D, Lewtas J (1986) Bioassay-directed chemical analysis in environmental research. Anal Chem 58:1060A–1075A

    CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    CAS  Google Scholar 

  • Sellström U, Jansson B (1995) Analysis of tetrabromobisphenol a in a product and environmental samples. Chemosphere 31:3085–3092

    Google Scholar 

  • Shiozawa T, Tada A, Nukaya H, Watanabe T, Takahashi Y, Asanoma M, Ohe T, Sawanishi H, Katsuhara T, Sugimura T, Wakabayashi K, Terao Y (2000) Isolation and identification of a new 2-phenylbenzotriazole-type mutagen (PBTA-3) in the Nikko River in Aichi, Japan. Chem Res Toxicol 13:535–540

    CAS  Google Scholar 

  • Simboura N, Zenetos A, Panayotidis P, Makra A (1995) Changes in benthic community structure along an environmental pollution gradient. Mar Pollut Bull 30:470–474

    CAS  Google Scholar 

  • Smith B (1990) Identification and reduction of toxic pollutants in textile mill effluents. Office of Waste Reduction, North Carolina State University, N.C. Department of Environment, Health, and Natural Resources, Raleigh, p 108

    Google Scholar 

  • Söderström M, Wachtmeister CA, Förlin L (1994) Analysis of chlorophenolics from bleach kraft mill effluents (BKME) in bile of perch (Perca fluviatlis) from the Baltic Sea and development of an analytical procedure also measuring chlorocatechols. Chemosphere 28:1701–1719

    Google Scholar 

  • Soimasuo R, Jokinen I, Kukkonen J, Petänen T, Ristola T, Oikari A (1995) Biomarker responses along a pollution gradient: effects of pulp and paper mill effluents on caged whitefish. Aquat Toxicol 31:329–345

    CAS  Google Scholar 

  • Spanggord RJ, Gibson BW, Keck RG, Thomas DW (1982) Effluent analysis of wastewater generated in the manufacture of 2,4,6-trinitrotoluene 1 characterization study. Environ Sci Technol 16:229–232

    CAS  Google Scholar 

  • Speight JG (2007) The chemistry and technology of petroleum, 3rd edn. CRC Press, Boca Raton, p 945. ISBN 0-8493-9067-2

    Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    CAS  Google Scholar 

  • Svenson A, Norin H, Hynning P-A (1996) Toxicity-directed fractionation of effluents using the bioluminescence of Vibrio fischeri and gas chromatography/mass spectroscopy. Identification of toxic components. Environ Toxicol Water Qual Int J 11:277–284

    CAS  Google Scholar 

  • Swartz CD, Donnelly KC, Islamzadeh A, Rowe GT, Rogers WJ, Palatnikov GM, Mekhtiev AA, Kasimov R, McDonald TJ, Wicklife JK, Presley BJ, Bickham JW (2003) Chemical contaminants and their effects in fish and wildlife from the industrial zone of Sumgayit, Republic of Azerbaidjan. Ecotoxicology 12:509–521

    CAS  Google Scholar 

  • Takada H, Eganhouse RP (1998) Molecular markers of anthropogenic waste. In: Meyers RA (ed) Encyclopedia of environmental analyses and remediation. Wiley, New York, pp 2883–2940

    Google Scholar 

  • Takada H, Mutoh K, Tomita N, Miyadzu T, Ogura N (1994) Rapid removal of linear alkylbenzene sulfonates (LAS) by attached biofilm in an urban shallow stream. Water Res 28:1953–1960

    CAS  Google Scholar 

  • Tavendale MH, Wilkins AL, Langdon AG, Mackie KL, Stuthridge TR, McFarlane PN (1995) Analytical methodology for the determination of freely available bleached kraft mill effluent-derived organic constituents in recipient sediments. Environ Sci Technol 29:1407–1414

    CAS  Google Scholar 

  • Terasaki M, Fukazawa H, Tani Y, Makino M (2008) Organic pollutants in paper-recycling process water discharge areas: first detection and emission in aquatic environment. Environ Pollut 151:53–59

    CAS  Google Scholar 

  • Terasaki M, Shiraishi F, Fukazawa H, Makino M (2009) Development and validation of chemical and biological analyses to determine the antiestrogenic potency of resin acids in paper mill effluents. Environ Sci Technol 43:9300–9305

    CAS  Google Scholar 

  • Terasaki M, Jozuka K, Makino M (2012) Identification and accumulation of aromatic sensitizers in fish from paper recycling in Japan. Environ Toxicol Chem 31(1202):1208

    Google Scholar 

  • Terzic S, Ahel M (2011) Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Environ Pollut 159:557–566

    CAS  Google Scholar 

  • Thompson B, Adelsbach T, Brown C, Hunt J, Kuwabara J, Neale J, Ohlendorf H, Schwarzbach S, Spies R, Taberski K (2007) Biological effects of anthropogenic contaminants in the San Francisco Estuary. Environ Res 105:156–174

    CAS  Google Scholar 

  • Umbuzeiro GA, Freeman HS, Warren SH, Oliveira DP, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64

    CAS  Google Scholar 

  • UNEP (2012) In: Alcamo J, Leonard SA (eds) 21 Issues for the 21st century: result of the UNEP foresight process on emerging environmental issues. United Nations Environment Programme (UNEP), Nairobi, p 56

    Google Scholar 

  • Venturini N, Muniz P, Bίcego MC, Martins CC, Tommasi LR (2008) Petroleum contamination impact on macrobenthic communities under the influence of an oil refinery: integrating chemical and biological multivariate data. Estuar Coast Shelf Sci 78:457–467

    CAS  Google Scholar 

  • Wake H (2005) Oil refineries: a review of their ecological impacts on the aquatic environment. Estuar Coast Shelf Sci 62:131–140

    CAS  Google Scholar 

  • Walsh AR, O’Halloran J (1997) The toxicity of leather tannery effluent to a population of the blue mussel Mytilus edulis (L.). Ecotoxicology 6:137–152

    CAS  Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake DWS (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107

    CAS  Google Scholar 

  • Warwick RM, Platt HM, Clarke KR, Agard J, Gobin J (1990) Analysis of macrobenthic and meiobenthic community structure in relation to pollution and disturbance in Hamilton Harbor, Bermuda. J Exp Mar Biol Ecol 138:119–142

    Google Scholar 

  • Weber B, Bremser W, Hiltrop K (2009) Creating new materials with melamine resins. Prog Org Coat 64:150–155

    CAS  Google Scholar 

  • Weiss KD (1997) Paint and coatings: a mature industry in transition. Prog Polym Sci 22:203–245

    CAS  Google Scholar 

  • White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182

    CAS  Google Scholar 

  • Worawit W (2006) Characterization and fenton treatment of hazardous organic substances in para rubber industrial wastewater in Southern Thailand. Ph.D. thesis, Chulalongkorn University, doi: 123456789/8327

    Google Scholar 

  • Yang L, Yu H, Yin D, Jin H (1999) Application of the simplified toxicity identification evaluation procedures to a chemical works effluent. Chemosphere 38:3571–3577

    CAS  Google Scholar 

  • Yasuhara A, Shiraishi H, Tsuji M, Okuno T (1981) Analysis of organic substances in highly polluted river water by mass spectrometry. Environ Sci Technol 15:570–573

    CAS  Google Scholar 

  • Yasuhara A, Shiraishi H, Nishikawa M, Yamamoto T, Uehiro T, Nakasugi O, Okumura T, Kenmotsu K, Fukui H, Nagase M, Ono Y, Kawagoshi Y, Baba K, Noma Y (1997) Determination of organic components in leachates from hazardous waste disposal sites in Japan by gas chromatography–mass spectrometry. J Chromatogr A 774:321–332

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Dsikowitzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dsikowitzky, L., Schwarzbauer, J. (2013). Organic Contaminants from Industrial Wastewaters: Identification, Toxicity and Fate in the Environment. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutant Diseases, Remediation and Recycling. Environmental Chemistry for a Sustainable World, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-02387-8_2

Download citation

Publish with us

Policies and ethics