Skip to main content

School Air Quality: Pollutants, Monitoring and Toxicity

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 4))

Abstract

In recent years the use of synthetic materials in building and furnishing, the adoption of new lifestyles, the extensive use of products for environmental cleaning and personal hygiene have contributed to the deterioration of the indoor air quality (IAQ) and introduced new sources of risk to humans. Indoor environments include home work places such as offices, public buildings such as hospitals, schools, kindergartens, sports halls, libraries, restaurants and bars, theatres and cinemas and finally cabins of vehicles. Indoor environments in schools have been of particular public concern. According to recent studies, children aged between 3 and 14 spend 90 % of the day indoors both in winter and summer. Adverse environmental effects on the learning and performance of students in schools could have both immediate and lifelong consequences, for the students and for society. In fact, children have greater susceptibility to some environmental pollutants than adults, because they breathe higher volumes of air relative to their body weights and their tissues and organs are actively growing. This review describes methods for the assessment of indoor air quality in schools. To this aim, monitoring strategies for sampling and measurement of indoor air pollutants will be discussed. The paper’s goal involves four major points: (1) characteristics of indoor environments, chemical pollutants and their sources within school; (2) monitoring strategies; (3) sampling and analysis techniques; (4) an overview of findings from scientific literature. Finally, we summarize available knowledge about IAQ in schools highlighting key gaps and suggesting priority topics and strategies for research. Moreover, it provides useful tools to support the stakeholder for development of strategies of prevention and mitigation in school environments in order to improve the indoor air quality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AgBB (2010) Ausschuss zur gesundheitlichen Bewertung von Bauprodukten. Bewertungsschema fur VOC aus Bauprodukten. Committee for Health-related Evaluation of Building Products. Health-related evaluation procedure for volatile organic compounds emissions (VOC and SVOC) from building products. Available at: http://www.umweltbundesamt.de/produkte-e/bauprodukte/archive/AgBB-Evaluation-Scheme2010.pdf. Accessed 20 Nov 2012

  • Ajiboye P, White M, Graves H, Ross D (2006) Building research establishment for office of the Deputy Prime Minister: London. Ventilation and indoor air quality in schools – guidance report 202825

    Google Scholar 

  • Alm S (1999) Personal exposures of pre-school children to carbon monoxide and nitrogen dioxide in urban air. Dissertation, National Public Health Institute A19/99, Kuopio, Finland

    Google Scholar 

  • Alm S, Reponen A, Mukala K, Pasanen P, Tuomisto J, Jantunen MJ (1994) Personal exposures of preschool children to carbon monoxide: roles of ambient air quality and gas stoves. Atmos Environ 28:3577–3588

    CAS  Google Scholar 

  • Almeida SM, Canha N, Silva A, Do Carmo Freitas M, Pegas P, Alves C, Evtyugina M, Pio CA (2011) Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmos Environ 45(40):7594–7599

    CAS  Google Scholar 

  • Angiuli L, Bruno P, Caputi M, Caselli M, De Gennaro G, De Rienzo M (2003) Radial passive samplers for air quality monitoring in field comparison with a BTEX automatic analyser preliminary results. Fresenius Environ Bull 12(10):1167–1172

    CAS  Google Scholar 

  • Appatova AS, Ryan PH, LeMasters GK, Grinshpun SA (2008) Proximal exposure of public schools and students to major roadways: a nationwide U.S. survey. J Environ Plan Manag 51:631–646

    Google Scholar 

  • Apte MG, Fisk WJ, Daisey JM (2000) Associations between indoor (CO2) concentrations and sick building syndrome symptoms in US Office Buildings: an analysis of the 1994–1996 BASE Study Data (LBNL 44385). Indoor Air 10:246–257

    CAS  Google Scholar 

  • Arditsoglou A, Samara C (2005) Levels of total suspended particulate matter and major and trace elements in Kosovo: a source identification and apportionment study. Chemosphere 59:669–678

    CAS  Google Scholar 

  • Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, Mitchell EA, Pearce N, Sibbald B, Stewart AW, Strachan D, Weiland SK, Williams HC (1995) International study of asthma and allergies in childhood (ISAAC): rationale and methods. Eur Respir J 8(3):483–491. doi:10.1183/09031936.95.08030483

    CAS  Google Scholar 

  • Ashmore MR, Dimitroulopoulou C (2009) Personal exposure of children to air pollution. Atmos Environ 43:128–141. doi:10.1016/j.atmosenv.2008.09.024

    CAS  Google Scholar 

  • ASHRAE Standard 62 (1989) American Society of Heating, Refrigerating and Air-conditioning Engineers. Ventilation for acceptable indoor air quality. ASHRAE Standard 62, Atlanta

    Google Scholar 

  • ASHRAE Standard 62.1 (1999) American Society of Heating, Refrigerating and Air-conditioning Engineers. Ventilation for acceptable indoor air quality. ASHRAE Standard 62, Atlanta

    Google Scholar 

  • Barro R, Regueiro J, Llompart M, Garcia-Jares C (2009) Analysis of industrial contaminants in indoor air: Part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. J Chromatogr A 1216:540–566

    CAS  Google Scholar 

  • Bartlett KH, Kennedy SM, Brauer M, Netten CV, Dill B (2004) Evaluation and determinants of airborne bacterial concentrations in school classrooms. J Occup Environ Hyg 1:639–647

    Google Scholar 

  • Basu R, Samet JM (1999) A review of the epidemiological evidence on health effects of nitrogen dioxide exposure from gas stoves. J Environ Med 1:173–187. doi:10.1002/jem.28

    Google Scholar 

  • Bem H, Bem EM, Krawczyk J, Płotek M, Janiak S, Mazurek D (2013) Radon concentrations in kindergartens and schools in two cities: Kalisz and Ostrow Wielkopolski in Poland. J Radioanal Nucl Chem 295(3):2229–2232

    Google Scholar 

  • Bertoni G, Ciuchini C, Pasini A, Tappa R (2002) Monitoring of ambient BTX at Monterotondo (Rome) and indoor-outdoor evaluation in school and domestic sites. J Environ Monit 4:903–909. doi:10.1039/b206959h

    CAS  Google Scholar 

  • Blondeau P, Iordache V, Poupard O, Genin D, Allard F (2005) Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 15:2–12. doi:10.1111/j.1600-0668.2004.00263.x

    CAS  Google Scholar 

  • Branis M, Safránek J (2011) Characterization of coarse particulate matter in school gyms. Environ Res 111:485–491

    CAS  Google Scholar 

  • Branis M, Safránek J, Hytychová A (2009) Exposure of children to airborne particulate matter of different size fractions during indoor physical education at school. Build Environ 44:1246–1252. doi:10.1016/j.buildenv.2008.09.010

    Google Scholar 

  • Brown S, Sim M, Abramson M, Gray C (1994) Concentrations of volatile organic compounds in indoor air – a review. Indoor Air 4:123–134

    CAS  Google Scholar 

  • Bruno P, Caputi M, Caselli M, de Gennaro G, de Rienzo M (2005) Reliability of a BTEX radial diffusive sampler for thermal desorption: field measurements. Atmos Environ 39:1347–1355

    CAS  Google Scholar 

  • Bruno P, Caselli M, de Gennaro G, Iacobellis S, Tutino M (2008) Monitoring of volatile organic compounds in non-residential indoor environments. Indoor Air 18:250–256

    CAS  Google Scholar 

  • Burnett RT, Dales RE, Brooks JR, Raizenne ME, Krewski D (1997) Association between ambient carbon monoxide levels and hospitalizations for congestive heart failure in the elderly in 10 Canadian cities. Epidemiology 8:162–167

    CAS  Google Scholar 

  • Burnett RT, Cakmak S, Raizenne ME, Stieb D, Vincent R, Krewski D, Brooks JR, Philips O, Ozkayanak H (1998) The association between ambient carbon monoxide levels and daily mortality in Toronto, Canada. J Air Waste Manag Assoc 48:689–700

    CAS  Google Scholar 

  • Burton BT (1997) Volatile organic compounds. In: Bardana EJ, Montanaro A (eds) Indoor air pollution and health. Marcel Dekker, New York, pp 127–153

    Google Scholar 

  • Cano-Ruiz JA, Kong D, Balas RB, Nazaroff WW (1993) Removal of reactive gases at indoor surfaces: combining mass transport and surface kinetics. Atmos Environ 27A:2039–2050

    CAS  Google Scholar 

  • Chaloulakoua A, Mavroidisb I (2002) Comparison of indoor and outdoor concentrations of CO at a public school. Evaluation of an indoor air quality model. Atmos Environ 36:1769–1781

    Google Scholar 

  • Chithra VS, Shiva Nagendra SM (2012) Indoor air quality investigations in a naturally ventilated school building located close to an urban roadway in Chennai, India. Build Environ 54:159–167. doi:10.1016/j.buildenv.2012.01.016

    Google Scholar 

  • Clausen PA, Wilkins CK, Wolkoff P, Nielsen GD (2001) Chemical and biological evaluation of a reaction mixture of R-(+)- limonene/ozone—formation of strong airway irritants. Environ Int 26(7–8):511–522

    CAS  Google Scholar 

  • Clayton CA, Perritt RL, Pellizzari ED, Thomas KW, Whitmore RW, Wallace LA, Özkaynak H, Spengler JD (1993) Particle total exposure assessment methodology (PTEAM) study: distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a southern California community. J Exp Anal Environ Epidemiol 3:227–250

    CAS  Google Scholar 

  • Clements-Croome D (2006) Ventilation rates in schools. Build Environ 43(3):362–367

    Google Scholar 

  • Clouvas A, Xanthos S (2012) A comparison study between radon concentration in schools and other workplaces. Radiat Prot Dosimetry 149(2):207–210

    CAS  Google Scholar 

  • Corgnati SP, Filippi M, Viazzo S (2007) Perception of the thermal environment in high school and university classrooms: subjective preferences and thermal comfort. Build Environ 42:951–959

    Google Scholar 

  • Coward S, Llewellyn J, Raw G, Brown V, Crump D, Ross D (2001) Indoor air quality in homes in England. BRE report BR 433. CRC Ltd, Watford, UK

    Google Scholar 

  • Croome DJC, Awbi HB, Biro ZB, Kochhar N, Williams M (2008) Ventilation rates in schools. Build Environ 43:362–367

    Google Scholar 

  • Daisey JM, Angell WJ, Apte MG (2003) Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13:53–64

    CAS  Google Scholar 

  • Damek-Poprawa M, Sawicka-Kapusta K (2003) Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology 186:1–10

    CAS  Google Scholar 

  • Daresta BE, Liuzzi VC, de Gennaro G, De Giorgi C, De Luca F, Caselli M (2010) Evaluation of the toxicity of PAH mixtures and organic extract from Apulian particulate matter by the model system ‘Caenorhabditis elegans’. Fresen Environ Bull 19:2002–2005

    CAS  Google Scholar 

  • De Giuli V, Da Pos O, De Carli M (2012) Indoor environmental quality and pupil perception in Italian primary schools. Build Environ 56:335–345. doi:10.1016/j.buildenv.2012.03.024

    Google Scholar 

  • Destaillats H, Maddalena RL, Singer BC, Hodgson AT, McKone TE (2008) Indoor pollutants emitted by office equipment. A review of reported data and information needs. Atmos Environ 42:1371–1388

    CAS  Google Scholar 

  • Diapouli E, Chaloulakou A, Mihalopoulos N, Spyrellis N (2008) Indoor and outdoor PM mass and number concentrations at schools in the Athens area. Environ Monit Assess 136:13–20. doi:10.1007/s10661-007-9724-0

    CAS  Google Scholar 

  • Dijken FV, Bronswijk JV, Sundell J (2005) Indoor environment in Dutch primary schools and health of the pupils. In: Proceedings of indoor air, Beijing, China, vol 1, p 623

    Google Scholar 

  • Dimitroulopoulou C, Crump D, Coward SKD, Brown B, Squire R, Mann H, White M, Pierce B, Ross D (2005) Ventilation, air tightness and indoor air quality in new homes. BR477. Building Research Establishment Press, Garston/Watford/Hertfordshire

    Google Scholar 

  • ECA (1997) European collaborative action. Indoor air quality and its impact on man. Report N. 19

    Google Scholar 

  • Ekmekcioglu D, Keskin SS (2007) Characterization of indoor air particulate matter in selected elementary schools in Istanbul, Turkey. Indoor Built Environ 16:169–176. doi:10.1177/1420326X07076777

    CAS  Google Scholar 

  • Englert N (2004) Fine particles and human health – a review of epidemiological studies. Toxicol Lett 149:235–242

    CAS  Google Scholar 

  • EPA Method TO-15 (1999) Compendium of methods for the determination of toxic organic compounds in ambient air- second edition compendium method TO-15- determination of volatile organic compounds (VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS) U.S. Environmental Protection Agency Cincinnati, OH 45268

    Google Scholar 

  • European Collaborative Action (1994) Indoor air quality & its impact on man – environment and quality of life – report no 14: sampling strategies for volatile organic compounds (VOCs) in indoor air. Available at: http://www.inive.org/medias/ECA/ECA_Report14.pdf. Accessed 20 Nov 2012

  • Fan Z, Lioy P, Weschler CJ, Fiedler N, Kipen H, Zhang J (2003) Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ Sci Tech 37:1811–1821

    CAS  Google Scholar 

  • Faustman EM, Silbernagel SM, Fenske RA, Burbacher TM, Ponce RA (2000) Mechanisms underlying children’s susceptibility to environmental toxicants. Environ Health Perspect 108(Suppl 1):13–21

    CAS  Google Scholar 

  • Forbes L, Patel MD, Rudnicka AR, Cook DG, Bush T, Stedman JR, Strachan DP, Anderson HR (2009) Chronic exposure to outdoor air pollution and diagnosed cardiovascular disease: meta-analysis of three large cross-sectional surveys. Environ Health 8(30):1–9

    Google Scholar 

  • Fraga S, Ramos E, Martins A, Samúdio MJ, Silva G, Guedes J, Oliveira Fernandes E, Barros H (2008) Indoor air quality and respiratory symptoms in Porto Schools. Rev Port Pneumol XIV(4):487–507

    Google Scholar 

  • Fromme GH, Lahrz T, Hainisch A, Oddoy A, Piloty M, Rude H (2005) Elemental carbon and respirable particulate matter in the indoor air of apartments and nursery schools and ambient air in Berlin (Germany). Indoor Air 15:335–341

    CAS  Google Scholar 

  • Fromme H, Twardella D, Dietrich S, Heitmann D, Schierl R, Liebl B, Ruden H (2007) Particulate matter in the indoor air of classrooms-exploratory results from Munich and surrounding area. Atmos Environ 41:854–866. doi:10.1016/j.atmosenv.2006.08.053

    CAS  Google Scholar 

  • Fromme H, Diemer J, Dietrich S, Cyrys J, Heinrich J, Lang W, Kiranoglua M, Twardella D (2008) Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos Environ 42:6597–6605. doi:10.1016/j.atmosenv.2008.04.047

    CAS  Google Scholar 

  • Godwin C, Batterman S (2007) Indoor air quality in Michigan schools. Indoor Air 17:109–121

    CAS  Google Scholar 

  • Gold DR, Allen G, Damokosh A, Serrano P, Hayes C, Castiilejos M (1996) Comparison of outdoor and classroom ozone exposures for school children in Mexico city. J Air Waste Manag Assoc 46:335–342

    CAS  Google Scholar 

  • González A, Alcalá R, Casillas J, Cordón O, Herrera F (2005) A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems. Eng Appl Artif Intel 18(3):279–296

    Google Scholar 

  • Goyal R, Khare M (2011) Indoor air quality modeling for PM10, PM2.5, and PM1.0 in naturally ventilated classrooms of an urban Indian school building. Environ Monit Assess 176:501–516. doi:10.1007/s10661-010-1600-7

    CAS  Google Scholar 

  • Green RS, Smorodinsky S, Kim JJ, McLaughlin R, Ostro B (2004) Proximity of California public schools to busy roads. Environ Health Perspect 112:61–66

    Google Scholar 

  • Grimsrud D, Bridges B, Schulte R (2006) Continuous measurements of air quality parameters in schools. Build Res Inform 34:447–458

    Google Scholar 

  • Grontoft T (2002) Dry deposition of ozone on building materials. Chamber measurements and modelling of the time-dependent deposition. Atmos Environ 36:5661–5670

    CAS  Google Scholar 

  • Grøntoft T, Raychaudhuri MR (2004) Compilation of tables of surface deposition velocities of O3, NO2 and SO2 to a range of indoor surfaces. Atmos Environ 38(4):533–544

    Google Scholar 

  • Gul H, Gaga EO, Döğeroğlu T, Özden O, Ayvaz O, Özel S, Güngör G (2011) Respiratory health symptoms among students exposed to different levels of Air pollution in a Turkish city. Int J Environ Res Public Health 8:1110–1125. doi:10.3390/ijerph8041110

    Google Scholar 

  • Guo YL, Lin YC, Sung FC, Huang SL, Ko YC, Lei JS, Su HJ, Shaw CK, Lin RS, Dockery DW (1999) Climate, traffic-related air pollutants, and asthma prevalence in middle-school children in Taiwan. Environ Health Perspect 107:1001–1006

    CAS  Google Scholar 

  • Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94:57–66

    CAS  Google Scholar 

  • Guo H, Morawska L, He C, Gilbert D (2008) Impact of ventilation scenario on air exchange ratesand on indoor particle number concentrations in an air-conditioned classroom. Atmos Environ 42:757–768

    CAS  Google Scholar 

  • Hanoune B, LeBris T, Allou L, Marchand C, Calve LS (2006) Formaldehyde measurements in libraries: comparison between Infrared Diode Laser Spectroscopy and a DNPH-derivatization method. Atmos Environ 40:5768–5775

    CAS  Google Scholar 

  • Health Canada (1995) Exposure guidelines for residential indoor air quality. Report of the Federal-Provincial Advisory Committee on environmental and occupational health. Health Canada Publications – Communications, Ottawa, ON. Available at: http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/air/exposure-exposition/exposure-exposition-eng.pdf. Accessed 20 Nov 2012

  • Heudorf U, Neitzert V, Spark J (2009) Particulate matter and carbon dioxide in classrooms – the impact of cleaning and ventilation. Int J Hyg Environ Health 212:45–55

    CAS  Google Scholar 

  • Hochstetler HA, Yermakov M, Reponen T, Ryan PH, Grinshpun SA (2011) Aerosol particles generated by diesel-powered school buses at urban schools as a source of children’s exposure. Atmos Environ 45:1444–1453. doi:10.1016/j.atmosenv.2010.12.018

    CAS  Google Scholar 

  • Hodgson AT (1995) A review and a limited comparison of methods for measuring total volatile organic compounds in indoor Air. Indoor Air 5(4):247–257

    CAS  Google Scholar 

  • Hodgson AT, Levin H (2003) Volatile organic compounds in indoor air: a review of concentrations measured in North America since 1990. Report LBNL-51715. Berkeley National Laboratory, Lawrence. Available at: http://energy.lbl.gov/ie/pdf/LBNL-51715.pdf. Accessed 20 Nov 2012

  • Hodgson MJ, Frohlinger J, Permar E, Tidwell C, Traven ND, Olenchock SA, Karpf M (1991) Symptoms and micro-environmental measures in non-problem buildings. J Occup Med 33(4):527–533

    CAS  Google Scholar 

  • Holguin F, Flores S, Ross Z, Cortez M, Molina M, Molina L, Rincon C, Jerrett M, Berhane K, Granados A, Romieu I (2007) Traffic-related exposures, airway function, inflammation and respiratory symptoms in children. Am J Respir Crit Care Med 176:1236–1242. doi:10.1164/rccm.200611-1616OC

    CAS  Google Scholar 

  • Hong H, Cheng LS, Jun-Ji C, Chang-Wei Z, Xin-Geng C, Shao-Jia F (2007) Characteristics of indoor/outdoor PM2.5 and elemental components in generic urban, roadside and industrial plant areas of Guangzhou City China. J Environ Sci 19:35–43

    Google Scholar 

  • Huang YC, Ghio AJ (2006) Vascular effects of ambient pollutant particles and metals. Curr Vasc Pharmacol 4:199–208

    CAS  Google Scholar 

  • Hubbell BJ, Hallberg A, McCubbin DR, Post E (2005) Health related benefits of attaining the 8-hr ozone standard. Environ Health Perspect 113:73–82

    CAS  Google Scholar 

  • Hulin M, Annesi-Maesano I, Caillaud D (2011) Indoor air quality at school and allergy and asthma among schoolchildren. Differences between rural and urban areas. Rev Fr D’allergol 51:419–424. doi:10.1016/j.reval.2011.01.002

    Google Scholar 

  • IARC (2011) Monographs on the evaluation of Carcinogenicity to Humans, volume 100 F, Formaldehyde, 2012) U.S. Department of Health and Human Services Public Health Service, National Toxicology Program, Report on Carcinogens, 12th edn

    Google Scholar 

  • IARC (2012) A review of human carcinogens: chemical agents and related occupations, vol 100F, IARC monographs. IARC, Lyon

    Google Scholar 

  • Norback D, Wieslander G, Edling C (1995) Occupational exposure to volatile organic compounds (VOCs), and other air pollutants from the indoor application of water-based paints. Ann Occup Hyg 39(6):783–794

    Google Scholar 

  • ISO 16000-3:2011. Indoor air-part 3: determination of formaldehyde and other carbonyl compounds in indoor air and test chamber air-active sampling method

    Google Scholar 

  • ISO 16000-6:2011. Indoor air-part 6: determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID

    Google Scholar 

  • Janson C, Anto J, Burney P, Chinn S, de Marco R, Heinrich J, Jarvis D, Kuenzli N, Leynaert B, Luczynska C, Neukirch F, Svanes C, Sunyer J, Wjst M (2001) The European community respiratory health survey: what are the main results so far ? European Community Respiratory Health Survey II. Eur Respir J 18(3):598–611

    CAS  Google Scholar 

  • Janssen NAH, Hoek G, Harssema H, Brunekreef B (1997) Childhood exposure to PM10: relation between personal, classroom, and outdoor concentrations. Occup Environ Med 54(12):888–894

    CAS  Google Scholar 

  • Janssen NAH, van Vliet PHN, Aarts F, Harssema H, Brunekreef B (2001) Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmos Environ 35:3875–3884

    CAS  Google Scholar 

  • Janssen NA, Brunekreef B, van Vliet P, Aarts F, Meliefste K, Harssema H, Fischer P (2007) The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Environ Health Perspect 111:1512–1518. doi:10.1289/ehp.6243

    Google Scholar 

  • Jo WK, Kim JD (2010) Personal exposure of graduate students attending the college of natural sciences or social sciences to volatile organic compounds on campus. Chemosphere 81:1272–1279

    CAS  Google Scholar 

  • Jones AP (1999) Indoor air quality and health. Atmos Environ 33(28):4535–4564

    CAS  Google Scholar 

  • Kim JJ, Smorodinsky S, Lipsett M, Singer BC, Hodgson AT, Ostro B (2004) Traffic-related air pollution near busy roads: the East Bay Children’s Respiratory Health Study. Am J Respir Crit Care Med 170(5):520–526. doi:10.1164/rccm.200403-281OC

    Google Scholar 

  • Kotzias D (2005) Indoor air and human exposure assessment – needs and approaches. Exp Toxicol Pathol 57:5–7

    Google Scholar 

  • Kotzias D, Koistinen K, Kephalopoulos S, Schlitt C, Carrer P, Maroni M, Jantunen M, Cochet C, Kirchner S, Lindvall T, McLaughlin J, Mølhave L, de Oliveira Fernandes E, Seifert B (2005) The INDEX project: critical appraisal of the setting and implementation of indoor exposure limits in the EU. Final report, EUR 21590 EN

    Google Scholar 

  • Koutrakis P, Briggs SLK, Leaderer BP (1992) Source apportionment of indoor aerosols in Suffolk and Onondaga Counties, New York. Environ Sci Tech 23:521–527

    Google Scholar 

  • Lahrz T (2006) Innenraumluftqualitat in Berliner Schulen – Feinstaub und Adsorbierte Substanzen. In: Bayerisches Landesamt fur Gesundheit und Lebensmittelsicherheit: Aktuelle umweltmedizinische Probleme in Innenraumen, Teil 1. Band 13 der Schriftenreihe: Materialien zur Umweltmedizin. Erlangen, pp 88–113

    Google Scholar 

  • Lahrz T, Piloty M (2005) Innenraumluftqualitat in Berliner Schulen – Feinstaub und adsorbierte Substanzen. Bericht im Auftrag des Landesamtes fur Arbeitsschutz, Gesund-heitsschutz und technische Sicherheit, Berlin (LAGetSi)

    Google Scholar 

  • Lammel G, Novák J, Landlová L, Dvorská A, Klánová J, Èupr P, Kohoutek J, Reimer E, Škrdlíková L (2010) Sources and distributions of polycyclic aromatic hydrocarbons and toxicity of polluted atmosphere aerosols. In: Zereini F, Wiseman CLS (eds) Urban airborne particulate matter: origins, chemistry. Fate and health impact. Springer, Berlin, pp 39–62

    Google Scholar 

  • Lee SC, Chang M (1999) Indoor Air quality investigations at five classrooms. Indoor Air 9:134–138

    CAS  Google Scholar 

  • Lee SC, Chang M (2000) Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 41:109–113

    CAS  Google Scholar 

  • Lee K, Parkhurst WJ, Xue J, Ozkaynak A, Neuberg D, Spengler JD (2004) Outdoor/indoor/personal ozone exposures of children in Nashville, Tennessee. Air Waste Manag Assoc 54:352–359

    CAS  Google Scholar 

  • Leovic KW, Sheldon LS, Whitaker DA, Hetes RG, Calcagni JA, Baskir JN (1996) Measurement of indoor air emissions from dry-process photocopy machines. J Air Waste Manag Assoc 46(9):821–829

    CAS  Google Scholar 

  • Li TH, Turpin BJ, Shields HC, Weschler CJ (2002) Indoor hydrogen peroxide derived from ozone/d-limonene reactions. Environ Sci Tech 36:3295–3302

    CAS  Google Scholar 

  • Lin JJ, Lee LC (2004) Characterization of the concentration and distribution of urban submicron (PM1) aerosol particle. Atmos Environ 38:469–475

    CAS  Google Scholar 

  • Liu Y, Chen R, Shen X, Mao X (2004) Wintertime indoor air levels of PM10, PM2.5 and PM1 at public places and their contributions to TSP. Environ Int 30:189–197

    CAS  Google Scholar 

  • Liuzzi VC, Daresta BE, de Gennaro G, De Giorgi C (2011) Different effects of polycyclic aromatic hydrocarbons in artificial and in environmental mixtures on the free living nematode C. elegans. J Appl Toxicol 32:45–50

    Google Scholar 

  • Long CM, Suh HH, Koutrakis P (2000) Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manag Assoc 50:1236–1250

    CAS  Google Scholar 

  • MacIntosh DL, Minegishi T, Fragala MA, Allen JG, Coghlan KM, Stewart JH, McCarthy JF (2012) Mitigation of building-related polychlorinated biphenyls in indoor air of a school. Environ Health 11:24. doi:10.1186/1476-069X-11-24

    CAS  Google Scholar 

  • Meininghaus R, Kouniali A, Mandin C, Cicolella A (2003) Risk assessment of sensory irritants in indoor air a case study in a French school. Environ Int 28:553–557

    CAS  Google Scholar 

  • Mejía JF, Low Choy S, Mengersen K, Morawska L (2011) Methodology for assessing exposure and impacts of air pollutants in school children: data collection, analysis and health effects – a literature review. Atmos Environ 45:813–823. doi:10.1016/j.atmosenv.2010.11.009

    Google Scholar 

  • Mendell JM, Health GA (2005) Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 15:27–52

    CAS  Google Scholar 

  • Mentese S, Gullu G (2006) Variations and sources of formaldehyde levels in residential indoor air in Ankara, Turkey. Indoor Built Environ 15:273–281

    CAS  Google Scholar 

  • Mi YH, Norback D, Tao J, Mi YL, Ferm M (2006) Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms. Indoor Air 16(6):454–464. doi:10.1111/j.1600-0668.2006.00439.x

    CAS  Google Scholar 

  • Mølhave L, Bach B, Pedersen OF (1986) Human reactions to low concentrations of volatile organic compounds. Environ Int 12(1–4):167–175

    Google Scholar 

  • Molnar P, Bellander T, Sallsten G, Boman J (2007) Indoor and outdoor concentrations of PM2.5 trace elements at homes, preschools and schools in Stockholm, Sweden. J Environ Monit 9:348–357

    CAS  Google Scholar 

  • Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S, Bauer CP, Reinhardt D, Wichmann HE, Heinrich J (2007) Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med 64(1):8–16. doi:10.1136/oem.2006.028241

    CAS  Google Scholar 

  • Mullen NA, Bhangar S, Hering SV, Kreisberg NM, Nazaroff WW (2011) Ultrafine particle concentrations and exposures in six elementary school classrooms in northern California. Indoor Air 21:77–87. doi:10.1111/j.1600-0668.2010.00690.x

    CAS  Google Scholar 

  • Mumovic D, Palmer J, Davies M, Orme M, Ridley I, Oreszczyn T, Jud C, Critchlow R, Medina HA, Pilmoor G, Pearson C, Way P (2009) Winter indoor air quality, thermal comfort and acoustic performance of newly built secondary schools in England. Build Environ 44:1466–1477. doi:10.1016/j.buildenv.2008.06.014

    Google Scholar 

  • Nadadur SS, Miller A, Hopke PK, Gordon T, Vedal S, Vandenberg JJ, Costa DL (2007) The complexities of air pollution regulation: the need for an integrated research and regulatory perspective. Toxicol Sci 100:318–327

    CAS  Google Scholar 

  • Namdeo A, Bell MC (2005) Characteristics and health implications of fine and coarse particulates at roadside, urban background and rural sites in UK. Environ Int 31:565–573

    CAS  Google Scholar 

  • NIOSH/IPCS (2004) International chemical safety cards: formaldehyde

    Google Scholar 

  • Norback D, Torgen M, Edling C (1990) Volatile organic compounds, respirable dust, and personal factors related to prevalence and incidence of sick building syndrome in primary schools. Br J Ind Med 47:733–741

    CAS  Google Scholar 

  • Oeder S, Dietrich S, Weichenmeier I, Schober W, Pusch G, Jörres RA, Schierl R, Nowak D, Fromme H, Behrendt H, Buters J (2012) Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany. Indoor Air 22:148–158

    CAS  Google Scholar 

  • OEHHA (2008) Office of environmental health hazard assessment, Sacramento, CA. Air toxics hot spots, risk assessment guidelines, technical support document for the derivation of noncancer reference exposure levels. Appendix D. Available at: http://oehha.ca.gov/air/hot_spots/2008/NoncancerTSD_final.pdf. Accessed 20 Nov 2012.

  • Oie L, Nafstad P, Botten G (1993) Infants exposure to NO2. In: Proceedings of indoor air ’93, Helsinki, Finland, vol 3, p 183

    Google Scholar 

  • Ott WR, Steinemann AC, Wallace LA (2007) Exposure analysis. CRC Press Taylor and Francis Group, New York

    Google Scholar 

  • Ozkaynak H, Xue J, Spengler JD, Wallace LA, Pellizzari ED, Jenkins P (1996) Personal exposure to airborne particles and metals: results from the particle TEAM study in Riverside, California. J Expo Anal Environ Epidemiol 6:57–78

    CAS  Google Scholar 

  • Park JC, Chung MH, Rhee EK (2011) Field survey on the indoor environment of elementary schools for planning of environment friendly school facilities. J Asian Archit Build Eng 10(2):461–468

    Google Scholar 

  • Pang SW (1994) Interim indoor air quality guidelines for Hong Kong, EP/TP/1/94. Environmental Protection Department, Hong Kong

    Google Scholar 

  • Pegas PN, Evtyugina MG, Alves CA, Nunes T, Cerqueira M, Franchi M, Pio C, Almeida SM, Freitas M (2010) Outdoor/indoor air quality in primary schools in Lisbon: a preliminary study. Quim Nova 33(5):1145–1149

    CAS  Google Scholar 

  • Pegas PN, Alves CA, Evtyugina MG, Nunes T, Cerqueira M, Franchi M, Pio CA, Almeida SM, Freitas MC (2011a) Indoor air quality in elementary schools of Lisbon in spring. Environ Geochem Health 33(5):455–468

    CAS  Google Scholar 

  • Pegas PN, Alves CA, Evtyugina MG, Nunes T, Cerqueira M, Franchi M, Pio CA, Almeida SM, Verde SC, Freitas MC (2011b) Seasonal evaluation of outdoor/indoor air quality in primary schools in Lisbon. J Environ Monit 13(3):657–667

    CAS  Google Scholar 

  • Pegas PN, Nunes T, Alves CA, Silva JR, Vieira SLA, Caseiro A, Pio CA (2012) Indoor and outdoor characterisation of organic and inorganic compounds in city centre and suburban elementary schools of Aveiro, Portugal. Atmos Environ 55:80–89

    CAS  Google Scholar 

  • Pennequin-Cardinal A, Plaisance A, Locoge N, Ramalho O, Kirchner S, Galloo JC (2005) Dependence on sampling rates of Radiello diffusion sampler for BTEX measurements with concentration level and exposure time. Talanta 65:1233–1240

    CAS  Google Scholar 

  • Pope CA, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    CAS  Google Scholar 

  • Poupard O, Blondeau P, Iordache V, Allard F (2005) Statistical analysis of parameters influencing the relationship between outdoor and indoor air quality in schools. Atmos Environ 39:2071–2080

    CAS  Google Scholar 

  • Prieditis H, Adamson IYR (2002) Comparative pulmonary toxicity of various soluble metals found in urban particulate dust. Exp Lung Res 28:563–576

    CAS  Google Scholar 

  • Priscilla N, Pegas M, Evtyugina G, Alves CA, Nunes T, Cerqueira M, Franchi M, Pio C (2010) Outdoor/indoor Air quality in primary schools in Lisbon: a preliminary study. Quim Nova 33(5):1145–1149

    Google Scholar 

  • Ramachandran G, Adgate JL, Banerjee S, Church TR, Jones D, Fredrickson A et al (2005) Indoor air quality in two urban elementary schools-measurements of airborne Fungi, Carpet allergens, CO2, temperature, and relative humidity. J Occup Environ Hyg 2:553–66

    Google Scholar 

  • Raub JA, Mathieu-Nolf M, Hampson NB, Stephen RT (2000) Carbon monoxide poisoning – a public health perspective. Toxicology 145:1–14

    CAS  Google Scholar 

  • Raysoni AU, Sarnat JA, Sarnat SE, Garcia JH, Holguin F, Luèvano SF, Li WW (2011) Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juárez, Chihuahua (México). Environ Pollut 159(10):2476–2486. doi:10.1016/j.envpol.2011.06.024

    CAS  Google Scholar 

  • Reich BJ, Fuentes M, Burke J (2009) Analysis of the effects of ultrafine particulate matter while accounting for human exposure. Environmetrics 20:131–146

    Google Scholar 

  • Righi E, Aggazzotti G, Fantuzzi G, Ciccarese PG (2002) Air quality and well-being perception in subjects attending university libraries in Modena (Italy). Sci Total Environ 286:41–50

    CAS  Google Scholar 

  • Rohr AC, Wilkins CK, Clausen PA, Hammer M, Nielsen GD, Wolkoff P (2002) Upper airway and pulmonary effects of oxidation products of (+)-alpha-pinene, d-limonene, and isoprene in BALB/c mice. Inhal Toxicol 14(7):663–684

    CAS  Google Scholar 

  • Rohr AC, Shore SA, Spengler JD (2003) Repeated exposure to isoprene oxidation products causes enhanced respiratory tract effects in multiple murine strains. Inhal Toxicol 15(12):1191–1207

    CAS  Google Scholar 

  • Rudnick S, Milton DK (2003) Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 13:237–245

    CAS  Google Scholar 

  • Sager TM, Castranova V (2009) Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 6:1–12

    Google Scholar 

  • Sarwar G, Corsi R, Allen D, Weschler CJ (2003) The significance of secondary organic aerosol formation and growth in buildings: experimental and computational evidence. Atmos Environ 37:1365–1381

    CAS  Google Scholar 

  • Sax SN, Bennett DH, Chillrud SN, Ross J, Kinney PL, Spengler JD (2006) A cancer risk assessment of inner-city teenagers living in New York City and Los Angeles. Environ Health Perspect 114(10):1558–1566

    CAS  Google Scholar 

  • Scheepers PTJ, Konings J, Demirel G, Gaga EO, Anzion R, Peer PGM, Dogeroglu T, Ornektekin S, van Doorn W (2010) Determination of exposure to benzene, toluene and xylenes in Turkish primary school children by analysis of breath and by environmental passive sampling. Sci Total Environ 408:4863–4870

    CAS  Google Scholar 

  • Scheff PA, Paulius VK, Curtis L, Conroy LM (2000a) Indoor air quality in a middle school, part II: development of emission factors for particulate matter and bioaerosols. Appl Occup Environ Hyg 15:835–842

    CAS  Google Scholar 

  • Scheff PA, Paulius VK, Huang SW, Conroy LM (2000b) Indoor air quality in a middle school, part I: use of CO2 as a tracer for effective ventilation. Appl Occup Environ Hyg 15:824–834

    CAS  Google Scholar 

  • Seppanen OA, Fisk WJ, Mendell MJ (1999) Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 9(4):226–252

    CAS  Google Scholar 

  • Sexton K, Ryan PB (1988) Assessment of human exposure to air pollution: methods, measurements and models. In: Ann YW, Bates RR, Kennedy D (eds) Air pollution, the automobile and public health, by the health effects institute. National Academy Press, Washington, DC

    Google Scholar 

  • Shaughnessy RJ, Haverinen-Shaughnessy U, Nevalainen A, Moschandreas D (2006) A preliminary study on the association between ventilation rates in classrooms and student performance. Indoor Air 16:465–468

    CAS  Google Scholar 

  • Shendell DG, Prill R, Fisk WJ, Apte MG, Blake D, Faulkner D (2004) Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 14:333–341

    CAS  Google Scholar 

  • Smedje G, Norback D, Edling C (1997a) Asthma among secondary schoolchildren in relation to the school environment. Clin Exp Allergy 27(11):1270–1278. doi:10.1111/j.1365-2222.1997.tb01171.x

    CAS  Google Scholar 

  • Smedje G, Norback D, Edling C (1997b) Subjective indoor air quality in schools in relation to exposure. Indoor Air 7:143–150

    CAS  Google Scholar 

  • Smedje G, Mattsson M, Walinder R (2011) Comparing mixing and displacement ventilation in classrooms: pupils’ perception and health. Indoor Air 21:454–461. doi:10.1111/j.1600-0668.2011.00725.x

    CAS  Google Scholar 

  • Sofuoglu A, Kiymet N, Kavcar P, Sofuoglu SC (2010) Polycyclic and nitro musks in indoor air: a primary school classroom and a women’s sport center. Indoor Air 20:515–522. doi:10.1111/j.1600-0668.2010.00674.x

    CAS  Google Scholar 

  • Sofuoglu SC, Aslan G, Inal F (2011) An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools. Int J Hyg Environ Health 214:38–46. doi:10.1016/j.ijheh.2010.08.008

    Google Scholar 

  • Sohn JR, Moon HJ, Ryu SH, Hwang T (2012) Indoor air quality in school classrooms with mechanical ventilation systems. In: Proceedings of the 7th international symposium on sustainable healthy buildings, Seoul, Korea, p 349

    Google Scholar 

  • Spedding JD (1974) Air pollution. Clarendon Press, Oxford

    Google Scholar 

  • Stranger M, Potgieter-Vermaak SS, Van Grieken R (2007) Comparative overview of indoor air quality in Antwerp, Belgium. Environ Int 33:789–797. doi:10.1016/j.envint.2007.02.014

    CAS  Google Scholar 

  • Stranger M, Potgieter-Vermaak SS, Van Grieken R (2008) Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 18:454–463

    CAS  Google Scholar 

  • Stranger M, Madureira J, Paciência I, Ventura G, De Oliveira Fernandes E (2012) Field study on schoolchildren’s exposure to indoor air in Porto, Portugal – Preliminary results. In: 10th international conference on healthy buildings 2012, vol 1, pp 851–856

    Google Scholar 

  • Szoboszlai Z, Furu E, Angyal A, Szikszai Z, Zs K (2011) Investigation of indoor aerosols collected at various educational institutions in Debrecen, Hungary. X-Ray Spectrom 40:176–180. doi:10.1002/xrs.1323

    CAS  Google Scholar 

  • Tager IB (1999) Air pollution and lung function growth—is it ozone? Am J Resp Crit Care Med 160:387–389

    CAS  Google Scholar 

  • Theodosiou TG, Ordoumpozanis KT (2008) Energy, comfort and indoor air quality in nursery and elementary school buildings in the cold climatic zones of Greece. Energy Build 40:2207–2214. doi:10.1016/j.enbuild.2008.06.011

    Google Scholar 

  • Touloumi G, Pocock SJ, Katsouyanni K, Trichopoulos D (1994) Short term effects of air pollution on daily mortality in Athens: a time-series analysis. Int J Epidemiol 23:957–967

    CAS  Google Scholar 

  • Tran DT, Alleman LY, Coddeville P, Galloo JC (2012) Elemental characterization and source identification of size resolved atmospheric particles in French classrooms. Atmos Environ 54:250–259. doi:10.1016/j.atmosenv.2012.02.021

    CAS  Google Scholar 

  • Trevisi R, Leonardi F, Simeoni C, Tonnarini S, Veschetti M (2012) Indoor radon levels in schools of South-East Italy. J Environ Radioact Pages 112:160–164

    CAS  Google Scholar 

  • UBA (2008) Guidelines for indoor air hygiene in school buildings. In: Dr. Heinz-Jörn Moriske, Dr. Regine Szewzyk (eds) Federal Environment Agency (UBA) Innenraumlufthygiene-Kommission des Umweltbundesamtes. Available at: http://www.umweltdaten.de/publikationen/fpdf-l/4113.pdf. Accessed 20 Nov 2012

  • UNI EN ISO 16000-1:2006. Indoor air – Part 1: General aspects of sampling strategy

    Google Scholar 

  • UNI EN ISO 16000-2: 2006. Indoor air – Part 2: Sampling strategy for formaldehyde

    Google Scholar 

  • UNI EN ISO 16000-5:2007. Indoor air – Part 5: Sampling strategy for volatile organic compounds (VOCs)

    Google Scholar 

  • UNI EN ISO 16017-1:2007. Campionamento ed analisi di composti organici volatili mediante tubo di adsorbimento/desorbimento termico/cromatografia gassosa capillare. Parte 1: Campionamento mediante aspirazione con pompa

    Google Scholar 

  • UNI EN ISO 16017-2:2007 Campionamento ed analisi di composti organici volatili mediante tubo di adsorbimento/desorbimento termico/cromatografia gassosa capillare. Parte 2: Campionamento per diffusione.

    Google Scholar 

  • UNI EN ISO 16000-12:2008. Indoor air – Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs).

    Google Scholar 

  • UNI EN ISO 16000-15:2008. Indoor air – Part 15: Sampling strategy for nitrogen dioxide (NO2)

    Google Scholar 

  • USEPA (1991) The Clean Air Act. Office of Research and Development, Washington, DC

    Google Scholar 

  • USEPA (2003) Integrated risk information system. USEPA, Washington, DC. Available at: http://www.epa.gov/IRIS/subst/2003

  • USEPA (2006) Integrated report guidance. USEPA, Washington, DC. Available at: http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/2006IRG_index.cfm

  • Vaizoglu SA, Aycan S, Deveci MA, Acer T, Bulut B, Bayraktar UD, Akyollu B, Celik M, Arslan U, Akpinar F, Baris Z, Arslan S, Deniz A, Didem Evci E, Güler C (2003) Determining domestic formaldehyde levels in Ankara, Turkey. Indoor Built Environ 12:329–335. doi:10.1177/142032603035546

    CAS  Google Scholar 

  • Van Dijken F, Van Bronswijk JEMH, Sundell J (2006) Indoor environment and pupils’ health in primary schools. Build Res Inf 34(5):437–446

    Google Scholar 

  • Van Roosbroeck S, Jacobs J, Janssen NAH, Oldenvening M, Hoek G, Brunekreef B (2007) Long-term personal exposure to PM2.5 soot and NOx in children attending schools near busy roads a validation study. Atmos Environ 41:3381–3394. doi:10.1016/j.atmosenv.2006.12.023

    Google Scholar 

  • Venn A, Lewis S, Cooper M, Hubbard R, Hill I, Boddy R, Bell M, Britton J (2000) Local road traffic activity and the prevalence, severity, and persistence of wheeze in school children: combined cross sectional and longitudinal study. Occup Environ Med 57:152–158

    CAS  Google Scholar 

  • Wahab SAA, Basma Y (2004) Total suspended dust and heavy metal levels emitted from a workplace compared with nearby residential houses. Atmos Environ 38:745–750

    Google Scholar 

  • Wåhlinder R, Norbäck D, Wieslander G, Smedje G, Erwall C (1997) Nasal mucosal swelling in relation to low air exchange rate in schools. Indoor Air 7:198–205

    Google Scholar 

  • Wainman T, Zhang J, Weschler CJ, Lioy PJ (2000) Ozone and limonene in indoor air: a source of submicron particle exposure. Environ Health Perspect 108:1139–1145

    CAS  Google Scholar 

  • Wargocki P, Wyon DP, Matysiak B, Irgens S (2005) The effects of classroom air temperature and outdoor air supply rate on the performance of school work by children. In: Proceedings of indoor air 2005, Beijing, vol 1, p 368

    Google Scholar 

  • Weichenthal S, Dufresne A, Infante-Rivard C, Joseph L (2008) Characterizing and predicting ultrafine particle counts in Canadian classrooms during the winter months: model development and evaluation. Environ Res 106:349–360. doi:10.1016/j.envres.2007.08.013

    CAS  Google Scholar 

  • Weschler CJ (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10:269–288

    CAS  Google Scholar 

  • Weschler CJ (2006) Ozone's Impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ Health Perspect 114(10):1489–1496. doi:10.1289/ehp.9256

    CAS  Google Scholar 

  • Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43:153–169

    CAS  Google Scholar 

  • Weschler GJ, Shields HC (1999) Indoor ozone/terpene reactions as a source of indoor particles. Atmos Environ 33:2301–2312

    CAS  Google Scholar 

  • Wild P, Bourgkard E, Paris C (2009) Lung cancer and exposure to metals: the epidemiological evidence. Method Mol Biol 472:139–167

    CAS  Google Scholar 

  • Wilkins CK, Clausen PA, Wolkoff P, Larsen ST, Hammer M, Larsen K, Hansen V, Nielsen GD (2001) Formation of strong airway irritants in mixtures of isoprene/ozone and isoprene/ozone/nitrogen dioxide. Environ Health Perspect 109:937–941

    CAS  Google Scholar 

  • Wolkoff P (1995) Volatile organic compounds-sources, measurements, emissions, and the impact on indoor air quality. Indoor Air 5(suppl 3):9–73

    Google Scholar 

  • Wolkoff P, Clausen PA, Wilkins CK, Hougaard KS, Nielsen GD (1999) Formation of strong airway irritants in a model mixture of (+)-alpha-pinene/ozone. Atmos Environ 33(5):693–698

    CAS  Google Scholar 

  • WHO, World Health Organization (1989) Indoor air quality: organic pollutants. Report on a WHO meeting, Berlin, 23–27 Aug 1987. EURO reports and studies 111. World Health Organization Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO Formaldehyde (2002) Concise international chemical assessment document 40.

    Google Scholar 

  • WHO, World Health Organisation (2006a) Air quality guidelines – global update 2005. WHO Regional Office for Europe. Available at: http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf. Accessed 20 Nov 2012

  • WHO, World Health Organization (2006b) Principles for evaluating health risks in children associated with exposure to chemicals. Available at: http://www.who.int/ipcs/publications/ehc/ehc237.pdf. Accessed 20 Nov 2012

  • WHO, World Health Organization (2009a) Guidelines for indoor air quality: dampness and mould. ISBN: 7989289041683. Available at: http://www.euro.who.int/__data/assets/pdf_file/0017/43325/E92645.pdf

  • WHO, World Health Organization (2009b) Handbook on indoor radon a public health perspective. ISBN: 9789241547673. Available at: http://whqlibdoc.who.int/publications/2009/9789241547673_eng.pdf

  • WHO, World Health Organization (2010) Guidelines for indoor air quality: selected pollutants. ISBN 978 92 890 0213 4. Available at: http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf

  • WHO, World Health Organisation (2011) Methods for monitoring indoor air quality in schools. Report of a meeting Bonn, Germany, 4–5 April 2011. WHO Regional Office for Europe. Copenhagen, Denmark. Available at: http://www.euro.who.int/__data/assets/pdf_file/0011/147998/e95417.pdf. Accessed 19 Nov 2012

  • Wu YC, Batterman SA (2006) Proximity of schools in Detroit, Michigan to automobile and truck traffic. J Expo Sci Environ Epidemiol 16:457–470

    Google Scholar 

  • Wu Q, Baek SY, Fang M, Chang YS (2010) Distribution and fate of polybrominated diphenyl ethers in indoor environments of elementary schools. Indoor Air 20:263–270. doi:10.1111/j.1600-0668.2010.00652.x

    CAS  Google Scholar 

  • Yamashita S, Kume K, Horiike T, Honma N, Masahiro F, Amagai T (2012) Emission sources and their contribution to indoor air pollution by carbonyl compounds in a school and a residential building in Shizuoka, Japan. Indoor Built Environ 21(3):392–402

    Google Scholar 

  • Yang W, Sohn J, Kim J, Son B, Park J (2009) Indoor air quality investigation according to age of the school buildings in Korea. J Environ Manag 90:348–354

    CAS  Google Scholar 

  • Zanobetti A, Schwartz J (2005) The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. Environ Health Perspect 113:978–982

    Google Scholar 

  • Zhang Q, Zhu Y (2012) Characterizing ultrafine particles and other air pollutants at five schools in South Texas. Indoor Air 22:33–42. doi:10.1111/j.1600-0668.2011.00738.x

    Google Scholar 

  • Zhang G, Spickett J, Rumchev K, Lee AH, Stick S (2006) Indoor environmental quality in a ‘low allergen’ school and three standard primary schools in Western Australia. Indoor Air 16:74–80

    Google Scholar 

  • Zhao Z, Zhang Z, Wang Z, Ferm M, Liang Y, Norbäck D (2008) Asthmatic symptoms among pupils in relation to winter indoor and outdoor air pollution in schools in Taiyuan, China. Environ Health Perspect 116(1):90–97. doi:10.1289/ehp.10576

    CAS  Google Scholar 

Download references

Acknowledgement

 The authors would like to thank the Apulia Region for funding the project “VOC and ODOR: evaluation of volatile organic compounds emissions and odour impacts produced by new plants and new technologies for the productive systems” admitted to the financing under the Announcement for the constitution of research laboratories networks (2009–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi de Gennaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dambruoso, P.R. et al. (2013). School Air Quality: Pollutants, Monitoring and Toxicity. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutant Diseases, Remediation and Recycling. Environmental Chemistry for a Sustainable World, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-02387-8_1

Download citation

Publish with us

Policies and ethics