Skip to main content

Clock Generation and Distribution

  • Chapter
  • First Online:
  • 2148 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

DLL is a popular clock generator in DRAM and duty cycle corrector is an essential block for DDR DRAM. Low skew, low power clock distribution method has become an important issue in high-bandwidth memories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Lines et al., “High speed circuit techniques in a 150 MHz 64 M SDRAM,” in Proc. Int’l Workshop on Memory Technology, Design and Testing., 1997, pp. 8–11.

    Google Scholar 

  2. A. Hatakeyama et al., “A 256-Mb SDRAM using a register-controlled digital DLL,” IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1728–1734, Nov. 1997.

    Article  Google Scholar 

  3. S. J. Kim et al., “A low-jitter wide-range skew-calibrated dual-loop DLL using antifuse circuitry for high-speed DRAM,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 726–734, Jun. 2002.

    Article  Google Scholar 

  4. S. Kuge et al., “A 0.18um 256-Mb DDR-SDRAM with low-cost post-mold tuning method for DLL replica,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 726–734, Nov. 2000.

    Article  Google Scholar 

  5. T. Hamamoto et al., “A skew and jitter suppressed DLL architecture for high frequency DDR SDRAMs,” in IEEE Symp. on Very Large Scale Integr. Circuits Dig. Tech. Papers, 2000, pp. 76–77.

    Google Scholar 

  6. T. Saeki et al., “A 2.5 ns clock access 250 MHz 256 Mb SDRAM with a synchronous mirror delay,” in ISSCC Dig. Tech. Papers, pp. 374–375, Feb. 1996.

    Google Scholar 

  7. A. Hatakeyama et al., “A 256 Mb SDRAM using a register-controlled digital DLL,” in ISSCC Dig. Tech. Papers, pp. 72–73, Feb. 1997.

    Google Scholar 

  8. J.-T. Kwak et al., “A low cost high performance register-controlled digital DLL for 1Gbps x32 DDR SDRAM”, in VLSI Dig. Tech. Papers, pp. 283–284, 2003.

    Google Scholar 

  9. H.-W. Lee et al., “A 1.0-ns/1.0-V delay-locked loop with racing mode and countered CAS latency controller for DRAM interfaces,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1436–1447, Jun. 2012.

    Google Scholar 

  10. H.-W. Lee et al., “A 7.7 mW/1.0 ns/1.35V delay locked loop with racing mode and OA-DCC for DRAM interface,” in Proc. IEEE Int. Conf. Circuits Syst., pp. 502-504, May 2010.

    Google Scholar 

  11. D. Shin et al., “Wide-range fast-lock duty-cycle corrector with offset-tolerant duty-cycle detection scheme for 54 nm 7 Gb/s GDDR5 DRAM interface,” in VLSI Dig. Tech. Papers, pp. 138–139, 2009.

    Google Scholar 

  12. H.-W. Lee et al., “A 1.6V 1.4 Gb/s/pin consumer DRAM with self-dynamic voltage-scaling technique in 44 nm CMOS technology,” IEEE J. Solid-State Circuits. IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 131–140, Jan. 2012.

    Article  Google Scholar 

  13. W.-J. Yun et al., “A 3.57 Gb/s/pin low jitter all-digital DLL with dual DCC circuit for GDDR3 DRAM in 54-nm CMOS technology,” IEEE Trans. VLSI Sys., vol. 19, no. 9, pp. 1718–1722, Nov. 2011.

    Article  Google Scholar 

  14. H.-W. Lee et al., “A 1.0-ns/1.0-V Delay-Locked Loop with racing mode and countered CAS latency controller for DRAM interfaces,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1436–1447, Jun. 2012.

    Article  Google Scholar 

  15. H.-W. Lee et al., “A 1.6V 3.3 Gb/s GDDR3 DRAM with dual-mode phase- and delay-locked loop using power-noise management with unregulated power supply in 54 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2009, pp. 140–141.

    Google Scholar 

  16. B.-G. Kim, et al., “A DLL with jitter reduction techniques and quadrature phase generation for DRAM interfaces,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1522–1530, May 2009.

    Article  Google Scholar 

  17. W.-J. Yun et al., “A 0.1-to-1.5 GHz 4.2 mW all-digital DLL with dual duty-cycle correction circuit and update gear circuit for DRAM in 66 nm CMOS Technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2008, pp. 282–283.

    Google Scholar 

  18. F. Lin, et al., “A wide-range mixed-mode DLL for a combination 512 Mb 2.0 Gb/s/pin GDDR3 and 2.5 Gb/s/pin GDDR4 SDRAM, IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 631–641, March 2008.

    Article  Google Scholar 

  19. Y. K. Kim et al., “A 1.5V, 1.6 Gb/s/pin, 1 Gb DDR3 SDRAM with an address queuing scheme and bang-bang jitter reduced DLL scheme” in IEEE Symp. on Very Large Scale Integr. Circuits Dig. Tech. Papers., 2007, pp. 182–183.

    Google Scholar 

  20. K.-W. Kim et al., “A 1.5-V 3.2 Gb/s/pin Graphic DDR4 SDRAM with dual-clock system, four-phase input strobing, and low-jitter fully analog DLL,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2369–2377, Nov. 2007.

    Article  Google Scholar 

  21. D.-U. Lee et al., “A 2.5 Gb/s/pin 256 Mb GDDR3 SDRAM with series pipelined CAS latency control and dual-loop digital DLL,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2006, pp. 547–548.

    Google Scholar 

  22. S.-J. Bae et al., “A 3 Gb/s 8b single-ended transceiver for 4-drop DRAM interface with digital calibration of equalization skew and offset coefficients,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2005, pp. 520–521.

    Google Scholar 

  23. Y.-J. Jeon et al., “A 66-333-MHz 12-mW register-controlled DLL with a single delay line and adaptive-duty-cycle clock dividers for production DDR SDRAMs,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 2087–2092, Nov. 2004.

    Article  Google Scholar 

  24. K.-H. Kim et al., “A 1.4 Gb/s DLL using 2nd order charge-pump scheme with low phase/duty error for high-speed DRAM application,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2004, pp. 213–214.

    Google Scholar 

  25. T. Hamamoto et al., “A 667-Mb/s operating digital DLL architecture for 512-Mb DDR,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 194–206, Jan. 2004.

    Article  Google Scholar 

  26. S. J. Kim, et al., “A low jitter, fast recoverable, fully analog DLL using tracking ADC for high speed and low stand-by power DDR I/O interface” in IEEE Symp. on Very Large Scale Integr. Circuits Dig. Tech. Papers, 2003, pp. 285–286.

    Google Scholar 

  27. T. Matano et al., “A 1-Gb/s/pin 512-Mb DDRII SDRAM using a digital DLL and a slew-rate-controlled output buffer,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 762–768, May 2003.

    Article  Google Scholar 

  28. K.-H. Kim, et al., “Built-in duty cycle corrector using coded phase blending scheme for DDR/DDR2 synchronous DRAM application” in IEEE Symp. on Very Large Scale Integr. Circuits Dig. Tech. Papers, 2003, pp. 287–288.

    Google Scholar 

  29. J.-T. Kwak, et al., “A low cost high performance register-controlled digital DLL for 1 Gbps x32 DDR SDRAM” in IEEE Symp. on Very Large Scale Integr. Circuits Dig. Tech. Papers, 2003, pp. 283–284.

    Google Scholar 

  30. S. J. Kim et al., “A low-jitter wide-range skew-calibrated dual-loop DLL using antifuse circuitry for high-speed DRAM,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 726–734, Jun. 2002.

    Article  Google Scholar 

  31. O. Okuda, et al., “A 66-400 MHz, adaptive-lock-mode DLL circuit with duty-cycle error correction [for SDRAMs]” in IEEE Symp. on Very Large Scale Integr. Circuits Dig. Tech. Papers, 2001, pp. 37–38.

    Google Scholar 

  32. J.-B. Lee et al., “Digitally-controlled DLL and I/O circuits for 500 Mb/s/pin x16 DDR SDRAM,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2001, pp. 68–69.

    Google Scholar 

  33. S. Kuge et al., “A 0.18um 256-Mb DDR-SDRAM with low-cost post-mold tuning method for DLL replica,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 726–734, Nov. 2000.

    Article  Google Scholar 

  34. J.-H. Lee, et al., “A 330 MHz low-jitter and fast-locking direct skew compensation DLL,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2000, pp. 352–353.

    Google Scholar 

  35. J. J. Kim, et al., “A low-jitter mixed-mode DLL for high-speed DRAM applications,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1430–1436, Oct. 2000.

    Article  Google Scholar 

  36. S. J. Kim et al., “A low jitter, fast recoverable, fully analog DLL using tracking ADC for high speed and low stand-by power DDR I/O interface” in IEEE Symp. on Very Large Scale Integr. Circuits Dig. Tech. Papers, pp. 285–286, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulwoo Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Kim, C., Song, J., Lee, HW. (2014). Clock Generation and Distribution. In: High-Bandwidth Memory Interface. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-02381-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02381-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02380-9

  • Online ISBN: 978-3-319-02381-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics