Skip to main content

Algal Growth on External Building Envelope

  • Chapter
  • First Online:
Nearly Zero Energy Buildings and Proliferation of Microorganisms

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Algae are very ancient living organisms. Their presence on earth came about some 3.5 billion years ago. They are considered “pioneer organisms” of outdoor environment, and it is actually possible to find different varieties of algae on the ground, in the air, in ice and even in anthropogenic elements such as the facades of buildings since they are able to survive through frequent freeze–thaw and dehydration cycles. The aesthetic quality and durability of an external building envelope could be seriously impaired by the development of algae which will colonise building materials whenever a suitable combination of humidity, warmth and light occurs. The fundamental role of water for algal growth is clear which, for several reasons, is found in large quantities on building facades. External sources of water here include rain, snow, ground moisture, airborne humidity and condensation of vapour from outdoor air. In addition to environmental conditions, the rate of stain development largely depends on the “bioreceptivity” of the material, that is, its aptitude to be biologically colonised which is related to the material properties that contribute to the anchorage and development of microorganisms. The facades of the buildings are then fertile substrates for the growth of algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dew point is the temperature below which the water vapour in a volume of humid air at a given constant barometric pressure will condense into liquid water.

  2. 2.

    External Thermal Insulation Composite Systems.

References

  • Adan OCG (1994) On the fungal defacement of interior finishes. Dissertation, Eindhoven University of Technology

    Google Scholar 

  • Ariño X, Ortega-Calvo J, Gomez-Bolea A, Saiz-Jimenez C (1995) Lichen colonization of the Roman pavement at Baelo Claudia (Cadiz, Spain): biodeterioration vs. bioprotection. Sci Total Environ 167:353–363

    Article  Google Scholar 

  • Barberousse H, Ruot B, Yéprémian C, Boulon G (2007) An assessment of façade coatings against colonisation by aerial algae and cyanobacteria. Build Environ 42:2555–2561. doi:10.1016/j.buildenv.2006.07.031

    Article  Google Scholar 

  • Bjelland T, Thorseth IH (2002) Comparative studies of the lichen–rock interface of four lichens in Vingen, western Norway. Chem Geol 192:81–98. doi:10.1016/S0009-2541(02)00193-6

    Article  Google Scholar 

  • Blocken B (2004) Wind-driven rain on buildings. Dissertation, Castholic University of Leuven, Belgium

    Google Scholar 

  • Breitbach AM, Rocha JC, Gaylarde CC (2011) Influence of pigment on biodeterioration of acrylic paint films in Southern Brazil. J Coat Technol Res 8:619–628. doi:10.1007/s11998-011-9350-1

    Article  Google Scholar 

  • Crispim CA, Gaylarde PM, Gaylarde CC, Neilan BA (2006) Deteriogenic cyanobacteria on historic buildings in Brazil detected by culture and molecular techniques. Int Biodeterior Biodegradation 57:239–243. doi: 10.1016/j.ibiod.2006.03.001

    Google Scholar 

  • Dubosc A, Escadeillas G, Blanc PJ (2001) Characterization of biological stains on external concrete walls and influence of concrete as underlying material. Cem Concr Res 31:1613–1617. doi: 10.1016/S0008-8846(01)00613-5

  • Dubosc A (2000) Etude du développement de salissures biologiques sur les parements en béton: mise au point d’essais accélérés de vieillissement. Dissertation, Institut National des Sciences Appliquées de Toulouse

    Google Scholar 

  • Edwards H, Russell N, Seaward M (1997) Calcium oxalate in lichen biodeterioration studied using FT-Raman spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 53:99–105. doi:10.1016/S1386-1425(97)83013-2

    Article  Google Scholar 

  • Edwards H, Russell N, Seaward M, Slarke D (1995) Lichen biodeterioration under different microclimates: an FT Raman spectroscopic study. Spectrochim Acta Part A Mol Biomol Spectrosc 51:2091–2100. doi:10.1016/0584-8539(95)01499-1

    Article  Google Scholar 

  • Gaylarde CC, Morton LHG, Loh K, Shirakawa MA (2011) Biodeterioration of external architectural paint films—a review. Int Biodeterior Biodegradation 65:1189–1198. doi: 10.1016/j.ibiod.2011.09.005

    Google Scholar 

  • Gaylarde PM, Gaylarde CC (2000) Algae and cyanobacteria on painted buildings in Latin America. Int Biodeterior Biodegradation 46:93–97. doi:10.1016/S0964-8305(00)00074-3

    Article  Google Scholar 

  • Grossin F, Dupuy P (1978) Méthode simplifiée de détermination des constituants des salissures: Proceedings du Colloque International RILEM sur l’Altération et la Protection des Monuments en Pierre, Paris, France, p 41

    Google Scholar 

  • Guillitte O (1998) Bioreceptivity and biodeterioration of brick structures. In: Conservation of historic brick structures: case studies and reports of research, Donhead Publishing, Shaftesbury, pp 68–84

    Google Scholar 

  • Johansson S (2006) Biological growth on mineral façades. Dissertation, Lund University, Sweden

    Google Scholar 

  • Kappock P (2004) Biocides: wet state and dry film. In: Handbook of coating additives, Marcel Dekker, New York

    Google Scholar 

  • Karsten U, Schumann R, Haubner N, Friedl T (2005) Lebensraum fassade: aeroterrestrische mikroalgen. Biol unserer Zeit 35:20–30. doi:10.1002/biuz.200410269

    Article  Google Scholar 

  • Knight T, Hammet M (1993) The interaction of design and weathering on masonry constructions. Masonry International 7:9–13

    Google Scholar 

  • Kuenzel H, Sedlbauer K (2001) Biological growth on stucco. In: Proceedings of the 8th international conference on performance of exterior envelopes of whole buildings, Clearwater Beach, Florida, pp 1–5

    Google Scholar 

  • Künzel HM (2010) Factors determining surface moisture on external walls. In: Proceedings of the 11th international conference on thermal performance of the exterior envelopes of whole buildings, Clearwater Beach, Florida

    Google Scholar 

  • Künzel HM, Künzel H, Sedlbauer K (2006) Hygrothermische beanspruchung und lebensdauer von wärmedämm-verbundsystemen. Bauphysik 28:153–163. doi:10.1002/bapi.200610015

    Article  Google Scholar 

  • McNeill J, Barrie F, Buck W (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). In: Proceedings of the 18th international botanical congress Melbourne, Australia

    Google Scholar 

  • Morton L, Surman S (1994) Biofilms in biodeterioration—a review. Int Biodeterior Biodegradation 34:203–221. doi:10.1016/0964-8305(94)90083-3

    Article  Google Scholar 

  • Nay M, Raschle P (2003) Wie lassen sich Algen und Pilze an Fassaden verhindern. Tagungsband, 131–138

    Google Scholar 

  • Peraza Zurita Y, Cultrone G, Sánchez Castillo P, et al (2005) Microalgae associated with deteriorated stonework of the fountain of Bibatauín in Granada, Spain. Int Biodeterior Biodegradation 55:55–61. doi: 10.1016/j.ibiod.2004.05.006

  • Prieto Lamas B, Rivas Brea MT, Silva Hermo BM (1995) Colonization by lichens of granite churches in Galicia (northwest Spain). Sci Total Environ 167:343–351. doi:10.1016/0048-9697(95)04594-Q

    Article  Google Scholar 

  • Schlichting HE (1975) Some subaerial algae from Ireland. Brit Phycol J 10:257–261. doi:10.1080/00071617500650251

    Article  Google Scholar 

  • Sedlbauer K, Krus M, Fitz C, Künzel H (2011) Reducing the Risk of Microbial Growth on Insulated Walls by PCM Enhanced Renders and IR Reflecting Paints. In: Proceedings of the 11th DBMC international conference on durability of building materials and components, Porto, Portugal, pp 1–7

    Google Scholar 

  • Shirakawa MA, Tavares RG, Gaylarde CC et al (2010) Climate as the most important factor determining anti-fungal biocide performance in paint films. Sci Total Environ 408:5878–5886. doi:10.1016/j.scitotenv.2010.07.084

    Article  Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. J Geomicrobiol 17:97–124. doi:10.1080/01490450050023791

    Article  Google Scholar 

  • Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. In: Proceedings of the 9th ARIADNE workshop on historic material and their diagnostic, ARCCHIP, Prague

    Google Scholar 

  • Urzì C, De Leo F (2007) Evaluation of the efficiency of water-repellent and biocide compounds against microbial colonization of mortars. Int Biodeterior Biodegradation 60:25–34. doi:10.1016/j.ibiod.2006.11.003

    Article  Google Scholar 

  • Venzmer H, Von Werder J, Lesnych N, Koss L (2008) Algal defacement on facade materials—results of a long term natural weathering tests obtained by new diagnostic tools. In: DTU (ed) Proceedings of 8th symposium on building physics in the nordic countries, Copenhagen, Denmark, pp 277–284

    Google Scholar 

  • Wagner O (2001) Sauber bleiben: Anschmutzungsverhalten von wässrigen Fassadenfarben. Farbe + Lack 107:105–134

    Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46:343–368. doi:10.1016/S0964-8305(00)00109-8

    Article  Google Scholar 

  • Winters H (1981) Latex Paints. Academic Press, Oxford UK

    Google Scholar 

  • Zelia Almeida De França A, Miller AZ (2010) Primary bioreceptivity of limestones from the mediterranean basin to phototrophic microorganisms. Dissertation, Universidade Nova de Lisboa

    Google Scholar 

  • Zillig W, Lenz K, Sedlbauer K, Krus M (2003) Condensation on the facade. Influence of construction type and orientation.In: Proceedings of the 2nd international conference on building physics, Antwerpen, Belgium, pp 437–444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Di Giuseppe .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Di Giuseppe, E. (2013). Algal Growth on External Building Envelope. In: Nearly Zero Energy Buildings and Proliferation of Microorganisms. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-02356-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02356-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02355-7

  • Online ISBN: 978-3-319-02356-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics