Skip to main content

From Long-Range Order to Complex Networks, an Hamiltonian Dynamics Perspective

  • Chapter
  • First Online:
Nonlinear Dynamics and Complexity

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 8))

Abstract

In this chapter we discuss the influence of a nontrivial network topology on the thermodynamic behavior of an Hamiltonian model defined on it, the XY -rotors model. We first focus on network topology analysis, considering the regular chain and a Small World network, created with the Watt–Strogatz model. We parametrize these topologies via γ, giving the vertex degree kN γ−1 and p, the probability of rewiring. We then define two topological parameters, the average path length and the clustering coefficient C and we analyze their dependence on γ and p. We conclude this part presenting an algorithm, the tree algorithm, which enhances the calculation speed of and C. In the second part, we consider the behavior of the XY model on the regular chain and we find two regimes: one for γ < 1. 5, which does not display any long-range order and one for γ > 1. 5 in which a second order phase transition of the magnetization arises. Moreover we observe the existence of a metastable state appearing for γ c = 1. 5. Finally we illustrate in what conditions we retrieve the phase transition on Small World networks and how its critical energy \(\varepsilon _{c}(\gamma,p)\) depends on the topological parameters γ and p.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the present discussion, the words “vertex” and “particle” are confounded since the particles are located at the vertices of links.

  2. 2.

    We recall, for instance, that it has been shown how the thermodynamics of the XY model on random networks, hence topologically trivial, recovers the XY -HMF behavior [26].

  3. 3.

    Actually it is the first harmonic of the gravitational potential.

References

  1. Dorogovtsev SN, Goltsev AV, Mendes JFF (2008) Rev Mod Phys 80(4):1275

    Article  Google Scholar 

  2. Watts DJ, Strogatz SH (1998) Nature 393:440

    Article  Google Scholar 

  3. Antoni M, Ruffo S (1995) Phys Rev E 52:3261

    Article  Google Scholar 

  4. Leoncini X, Verga A, Ruffo S (1998) Phys Rev E 57(6):6377

    Article  Google Scholar 

  5. Jain S, Young AP (1986) J Phys C Solid State Phys 19(20):3913

    Article  Google Scholar 

  6. Janke W, Nather K (1991) Phys Lett A 157(1):11

    Article  Google Scholar 

  7. Kim JK (1994) Europhys Lett 28(3):211

    Article  Google Scholar 

  8. Lee DH, Joannopoulos JD, Negele JW, Landau DP (1984) Phys Rev Lett 52(6):433

    Article  Google Scholar 

  9. Loft R, DeGrand TA (1987) Phys Rev B 35(16):8528

    Article  Google Scholar 

  10. McCarthy JF (1986) Nucl Phys B 275(3):421

    Article  Google Scholar 

  11. Kosterlitz JM, Thouless DJ (1973) J Phys C Solid State Phys 6(7):1181

    Article  Google Scholar 

  12. Zheng B, Schulz M, Trimper S (1999) Phys Rev Lett 82:1891. doi:10.1103/PhysRevLett.82. 1891. http://link.aps.org/doi/10.1103/PhysRevLett.82.1891

  13. De Nigris S, Leoncini X (2013) Europhys Lett 101(1):10002

    Article  Google Scholar 

  14. De Nigris S., Leoncini X. (2013) Phys Rev E 88:012131

    Article  Google Scholar 

  15. Campa A, Dauxois T, Ruffo S (2009) Phys Rep 480(3–6):57

    Article  MathSciNet  Google Scholar 

  16. Antoniazzi A, Fanelli D, Barré J, Chavanis PH, Dauxois T, Ruffo S (2007) Phys Rev E 75(1):011112

    Article  Google Scholar 

  17. Ettoumi W, Firpo MC (2011) J Phys A Math Theor 44(17):175002

    Article  MathSciNet  Google Scholar 

  18. Latora V, Rapisarda A, Tsallis C (2002) Phys A 305(1–2):129

    Article  MATH  Google Scholar 

  19. Chavanis PH, Vatteville J, Bouchet F (2005) Eur Phys J B 46(1):6

    Article  Google Scholar 

  20. Chavanis PH, Ninno GD, Fanelli D, Ruffo S (2008) In: Chandre C, Leoncini X, Zaslavsky G (eds) Chaos, Complexity and Transport. World Scientific, Singapore, 2008, pp 3–26

    Google Scholar 

  21. Kim BJ, Hong H, Holme P, Jeon GS, Minnhagen P, Choi MY (2001) Phys Rev E 64:056135

    Article  Google Scholar 

  22. Medvedyeva K, Holme P, Minnhagen P, Kim BJ (2003) Phys Rev E 67(3):036118

    Article  Google Scholar 

  23. Kosterlitz JM, Thouless DJ (1973) J Phys C Solid State Phys 6:1181

    Article  Google Scholar 

  24. Fröhlich J, Spencer T (1981) Comm Math Phys 81(4):527

    Article  MathSciNet  Google Scholar 

  25. Campa A, Dauxois T, Ruffo S (2009) Phys Rep 480:57

    Article  MathSciNet  Google Scholar 

  26. Ciani A, Ruffo S, Fanelli D (2010) Long-range interaction, stochasticity and fractional dynamics: dedication to George M. Zaslavsky (1935–2008). HEP, Beijing and Springer, Berlin

    Google Scholar 

  27. Barrat A, Barthélemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  28. Newman MEJ, Watts DJ (1999) Phys Rev E 60(6):7332

    Article  Google Scholar 

  29. Bachelard R, Chandre C, Fanelli D, Leoncini X, Ruffo S (2008) Phys Rev Lett 101(26):260603

    Article  Google Scholar 

  30. Leoncini X, Van den Berg TL, Fanelli D (2009) Europhys Lett 86:20002

    Article  Google Scholar 

  31. Van den Berg TL, Fanelli D, Leoncini X (2010) Europhys Lett 89:50010

    Article  Google Scholar 

  32. Turchi A, Fanelli D, Leoncini X (2011) Comm Nonlinear Sci Numer Simulat 16(12):4718–4724. doi:10.1016/j.cnsns.2011.03.013. http://arxiv.org/abs/1007.2065v1 http://arxiv.org/pdf/1007.2065v1

  33. McLachlan RI, Atela P (1992) Nonlinearity 5:541

    Article  MathSciNet  MATH  Google Scholar 

  34. Leoncini X, Verga A (2001) Phys Rev E 64(6):066101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah de Nigris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Nigris, S., Leoncini, X. (2014). From Long-Range Order to Complex Networks, an Hamiltonian Dynamics Perspective. In: Afraimovich, V., Luo, A., Fu, X. (eds) Nonlinear Dynamics and Complexity. Nonlinear Systems and Complexity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-02353-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02353-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02352-6

  • Online ISBN: 978-3-319-02353-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics