Skip to main content

Comparison Method to Predict the Directivity of Terahertz Patch Antenna

  • Chapter
  • First Online:
Terahertz Planar Antennas for Next Generation Communication
  • 1720 Accesses

Abstract

Highly reflective surfaces as superstrate are widely used to enhance the directivity of an elementary dipole and microstrip antennas in the microwave and millimeter wave frequency regime of the electromagnetic spectrum. It is also demonstrated that such type of structures are also suitable for the terahertz application where the directivity is the primary concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Z.-G., Ge, Z.-C., Chen, X.-Y.: Research progress on Fabry-Perot resonator antenna. Int. J. Zhejiang Univ. Sci. A 10(4), 583–588 (2009)

    Google Scholar 

  2. Gardelli, R., Albani, M., Capolino, F.: Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement. IEEE Trans. Antennas Propag. 54(7), 1979–1990 (2006)

    Google Scholar 

  3. Boutayeb, H., Tarot, A. C.: Internally excited Fabry-Perot type cavity: power normalization and directivity evaluation. IEEE Antenna Wirel. Propag. Lett. 5(1), 159–162 (2006)

    Google Scholar 

  4. Guerin, N., Enoch, S., Tayeb, G., Sabouroux, P., Vincent, P., Legay, H.: A metallic Fabry-Perot directivity antenna. IEEE Trans. Antennas Propag. 54(1), 220–224 (2006)

    Google Scholar 

  5. Boutayeb, H., Denidni, T. A., Mahdjoubi, K., Tarot, A. C., Sebak, A. R., Talbi, L.: Analysis and design of a cylindrical EBG based directive antenna. IEEE Trans. Antennas Propag. 54(1), 211–219 (2006)

    Google Scholar 

  6. Ge, Z. C., Zhang, W. X., Liu, Z. G., Gu, Y. Y.: Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover. Microw. Opt. Tech. Lett. 48(7), 1272–1274 (2006)

    Google Scholar 

  7. Weily, R., Bird, T. S., Guo, Y. J.: A reconfigurable high-gain partially reflecting surface antenna. IEEE Trans. Antennas Propag. 56 (11), 3382–3390 (2008)

    Google Scholar 

  8. Campos, A. L. P. d.: Analysis of frequency selective surfaces with metallic and dielectric losses at millimeter wave range. Int. J. Infrared Milli. Waves and Terahertz 29(7), 684–692 (2008)

    Google Scholar 

  9. Ge, Y., Esselle, K. P., Bird, T. S.: Designing a partially reflective surface with increasing reflection phase for wide-band EBG resonator antennas. In: Proc. Int. Symp. Antennas Propag. Soc. 2009, USA, June 1-5, 2009, pp. 1–4 (2009)

    Google Scholar 

  10. Foroozesh, A., Shafai, L.: Investigation into the effects of patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Trans. Antennas Propag. 58(2), 258–270 (2010)

    Google Scholar 

  11. Zhao, T., Jackson, D. R., Williams, J. T., Oliner, A. A.: General formulas for 2-D leaky-wave antennas. IEEE Trans. Antennas Propag. 53(11), 3525–3533 (2005)

    Google Scholar 

  12. A Foroozesh, A., Shafai, L.: 2-D truncated periodic leaky-wave antennas with reactive impedance surface ground. In: Proc. IEEE Int. Symp., Albuquerque, USA, Jul. 9–14, 2006, pp. 15–18 (2006)

    Google Scholar 

  13. Raisanen, A. V.: Challenges of terahertz. In: Proc. 2nd European Conf. Antennas Propag., Edinburgh, UK, Nov. 11–16, 2007, pp. 1–4 (2007)

    Google Scholar 

  14. Trentini, G. V.: Partially reflecting sheet arrays. IRE Trans. Antennas Propag. 4(4), 666–671 (1956)

    Google Scholar 

  15. Feresidis, A. P., Vardaxoglou, J. C.: High gain planar antenna using optimised partially reflective surfaces. In: Proc. IEE Microw. Antennas. Propag. 148(6), 345–350 (2001)

    Google Scholar 

  16. Jha, K.R., Singh. G.: Prediction of highly directive probe-fed microstrip antenna at terahertz frequency. Int. J. Numer. Model. Electron. Netw. Devices Fields 25(2), 175–191 (2012)

    Google Scholar 

  17. Karver, K. R., Mink, J. W.: Microstrip antenna technology. IEEE Trans. Antennas Propag. 29(1), 2–24 (1981)

    Google Scholar 

  18. Chattopadhyay, S., Biswas, M., Siddiqui, J. Y., Guha, D.: Input impedance of probe-fed rectangular microstrip antennas with variable air gap and varying aspect ratio, IET Microw. Antennas Propag. 3(8), 1151–1156 (2009)

    Google Scholar 

  19. Balanis, C. A.: Antenna Theory Analysis and Design, John Wiley and Sons, New York (2001)

    Google Scholar 

  20. Derneryd, A. G.: A theoretical investigation of the rectangular microstrip antenna element. IEEE Trans. Antennas Propag. 26(4), 532–535 (1978)

    Google Scholar 

  21. Jha, K. R., Singh, G.: Analysis of the narrow terahertz microstrip transmission-line. J. Comp. Elect. 10(1–2), 186–194 (2011)

    Google Scholar 

  22. Gallerano, G. P., Biedron, S.: Overview of terahertz radiation sources. In: Proc. Free Electron Lasser Conf., Trieste, Italy, Aug. 29-Sep. 03, 2004, pp. 216–221 (2004)

    Google Scholar 

  23. Hong, J.–S., Lancaster, M. J.: Microstrip Filters for RF/Microwave Applications. John Wiley and Sons, New York (2001)

    Google Scholar 

  24. Balanis, C. A.: Advanced Engineering Electromagnetics. John Wiley and Sons, New York (1989)

    Google Scholar 

  25. Ju, J., Kim, D., Choi, J.: Fabry-Perot cavity antenna with lateral metallic walls for WiBro base station applications. Elect. Lett. 45(3), 141–142 (2009)

    Google Scholar 

  26. Jha K. R., Singh, G.: Terahertz dipole antenna in Fabry-Perot cavity with two side-walls to enhance the directivity. In: Proc. Infrared Milli. and Terahertz Waves, Rome, Italy, Sep. 05–08, 2010, pp. 1–2 (2010)

    Google Scholar 

  27. Piesiewicz, R., Islam, M. N., Koch, M., Kurner, T.: Towards short-range terahertz communication systems: basic considerations. In: Proc. 18th Int. Conf. Appl. Electromagnetics Commn., Dubrovnik, Croatia, Oct. 12–14, 2005, pp. 1–5 (2005)

    Google Scholar 

  28. Jha, K. R., Singh, G.: Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numer. Model. Electron. Netw. Devices Fields 24(5), 410–424 (2011)

    Google Scholar 

  29. Han K., Nguyen, T. K., Park, I., Han, H.: Terahertz Yagi-Uda antenna for high input resistance. J. Infrared Milli. Tera.Waves 31(5), 441–454 (2010)

    Google Scholar 

  30. Sharma, A., Singh, G.: Rectangular microstrip patch antenna design at THz frequency for short-distance wireless communication. J. Infrared Millim. Terahertz Waves 30(1), 1–7 (2009)

    Google Scholar 

  31. Lubecke, V., Mizuno, K., Rebeiz, G.: Micromachining for terahertz applications. IEEE Trans. Microw. Theo. Tech. 46(11), 1821–1831 (1998)

    Google Scholar 

  32. Kadoya, Y., Onuma, M., Yanagi, S., Ohkubo, T., Sato, N., Kitagawa, J.: THz wave propagation on strip-lines: devices, properties, and applications. Radioengineering 17(2), 48–55 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumud Ranjan Jha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jha, K.R., Singh, G. (2014). Comparison Method to Predict the Directivity of Terahertz Patch Antenna. In: Terahertz Planar Antennas for Next Generation Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-02341-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02341-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02340-3

  • Online ISBN: 978-3-319-02341-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics