Skip to main content

Development in the Terahertz Communication System

  • Chapter
  • First Online:
Terahertz Planar Antennas for Next Generation Communication

Abstract

The dream of the receiver subsystems in a chip is even complete transceivers, makes the millimeter/terahertz wave region and MMIC technology development the key factor. The communication system designer must not only integrate the antenna and its associated circuits but also the phase shifter, amplifiers and control circuits. the use of integrated monolithic antennas fabricated in a single, high resolution, integrated circuit process offers the potential of closer dimensional accuracy, ruggedness, simplicity and better reliability and reproducibility in comparison to their hybrid counterparts, being excellent candidates for integrated quasi-optical power combining systems. In previous chapters, we have emphasized on the planar antenna technology and described various techniques to improve the directivity of the antenna. However, various methods including the use of the artificially engineered materials, frequency selective surface, thick substrate material have been discussed. In addition to this, it has been stressed to the application of the low-permittivity substrate material to improve the electrical performance of the antenna. In this chapter, we present a brief review of the terahertz communication system including its importance, the development in the field of the hardware, the channel propagating model, and different compunction systems developed for the terahertz communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, Ho-Jin, Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. Terahertz Science and Technol. 1(1), 256–263(2011)

    Google Scholar 

  2. S. Cherry: Edholm’s law of bandwidth. IEEE Spectr. 41, 19–50 (2004)

    Google Scholar 

  3. Crow, T.W., Matmuch, R.J., Roser, H.P., Bishop, W.L., Peatman, W.C.B., Liu. X.: GaAs Schottky Diodes for THz mixing applications. IEEE Proc. 80(11), 1827–1841(1992)

    Google Scholar 

  4. Young, D. T., Irvin, J.C.: Millimeter frequency conversion using Au-n-GaAs Schottky barrier epitaxial diodes with a novel contracting technique. Proc. IEEE 53(12), 2130–2131(1965)

    Google Scholar 

  5. Suzuki, S, Shiraishi,M., Shibayama,H., Asida, M.: High-power operation of terahertz oscillators with resonant tunneling diodes using impedance-matched antennas and array configuration: IEEE J. Selected Topics in Quantum Electronics 19(1), 8500108/1-8 (2013)

    Google Scholar 

  6. Shiode, T., Mukai, T., Masashi Kawamura, M., Nagatsuma, T.: Giga-bit wireless communication at 300 GHz using resonant tunneling diode detector. In Proc. IEEE Asia-Pacific Microwave Conf., Melbourne, Aust., Dec. 5-8, 2011, pp. 1122–1125 (2011)

    Google Scholar 

  7. Varani, L., Palermo, C., Millithaler, J.F, Vaissiere, J.C., Starikov, E., Shiktorov, P., Gruzinskis, V, Mateos, J., Perez, S, Pardo, D., Gonzalez, T.: Numerical modeling of terahertz devices. J. Compt. Elect. 5(2/3), 71–77(2006)

    Google Scholar 

  8. Garcia, S., Inigue-de-la-Torre, I., Perez, S, Mateos, J., Gonzalez, T.: Numerical study of sub-millimeter Gunn oscillations in InP and GaN vertical diodes: Dependence on bias, doping, and length. J. Appl. Phys. 14, 074503 (2013)

    Google Scholar 

  9. L. Tohme,L., Blin, S., Nouvel, P., Penarier, A.,Torres, J., Varani, L., Ducournau, G., Artillan, P., Bollaert, S., Roelens, Y., Coquillat, D., D. But, D., Knap, W., Teppe, F.: Signal-to-noise ratio in terahertz wireless communication using field-effect-transistors as detectors. In Proc. Int. Conf. on Noise and Fluctuation, Montpellier, France, Jun., 24-28, 2013, pp. 1–3(2013)

    Google Scholar 

  10. Banerjee, S., Acharyya, A, Mitra, M., J. P. Banerjee, J.P: Large-signal properties of 3C-SiC/Si Heterojunction DDR IMPATT devices at Terahertz Frequencies. In: Proc. Progress in Electromagnetics Research, Stockholm, Sweden, Aug. 12-15, 2013, pp. 662–467 (2013)

    Google Scholar 

  11. Acharyya, A., Banerjee, J. P.: Potentiality of IMPATT devices as terahertz source: an Avalanche response time-based approach to determine the upper cut-off frequency limits. IETE Journal of Research 59(2), 118–127 (2013).

    Google Scholar 

  12. Rieh, J.-S., Jagannathan, B., Greenberg, D.R., Meghelli, M., Rylyakov, A., Guarin, F., Yang, Z., Ahlgren, D.C, Freeman, G., Cottrell, P., Harame, D.: SiGe Heterojunction bipolar transistors and circuits toward terahertz communication applications. IEEE Trans. Microw. Theo. Tech. 52(10), 2390–2408 (2004)

    Google Scholar 

  13. Saunders, S.R.: Antennas and propagation for wireless communication systems. John Wiley and Sons, NY (1999)

    Google Scholar 

  14. Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Kurrner, T.: Terahertz characterization of building materials. Electron. Lettrs. 41(18), 1–2 (2005)

    Google Scholar 

  15. Turchinovich, D., Kammoun, A., Knobloch, P., Dobbertin, T., Koch, M.: Flexible all-plastic mirrors for the THz range. Appl. Phys. A 74(2), 291–293(2002)

    Google Scholar 

  16. Krumbholz, N., Gerlach, K., Rutz, F., Koch, M. Piesiewicz, R., Kurner, T., Mittleman, D.: Omni-directional terahertz mirrors: A key element for future terahertz communication systems. Applied Physics Letters 88(20), 202905 (2006)

    Google Scholar 

  17. Ibraheem A., Krumbholz, N., Mittleman, D, Koch, M.: Low-dispersive dielectric mirrors for future wireless terahertz communication systems. IEEE Microwave and Wireless Components Letters. 18(1), 67–69(2008)

    Google Scholar 

  18. Piesiewicz, R., Schoebel, J., Koch, M., Kurner, T.: Propagation measurements and modeling for future indoor communication systems at THz frequencies. In Proc: Wave Propagation and Communication, Microwave Systems and Navigation, Chemnitz, Germany, July, 4–7, 2007, pp 3–7(2007)

    Google Scholar 

  19. Piesiewicz,R., Christian Jansen, C., Mittleman, D., Kleine-Ostmann, T., Martin Koch, M., and Thomas Kurner, T.: Scattering analysis for the modeling of THz communication systems. IEEE Trans. Antennas Propag. 55(11), 3002–3009 (2007)

    Google Scholar 

  20. Couch, L.W.: Digital and Analog Communication Systems. Prentice Hall, N.J.(1997)

    Google Scholar 

  21. Jastrow, C., Munter, K., Piesiewicz, R., Kurner,T., Koch, M., Kleine-Ostmann, T.: 300 GHz transmission system. Electronics Letters 44(3), 1–2 (2008)

    Google Scholar 

  22. Choi, Y., Choi, Ji-W., Cioffi, J.M.: A geometric-statistic channel model for THz indoor communications. J. Infrared Mill. Terahertz waves 34(7-8), 456–467(2013)

    Google Scholar 

  23. Manley, J.M., Rowe, H. E.: Some general properties of nonlinear elements-Pt. I, General energy relation. In Proc. IRE 44, 904–913(1956)

    Google Scholar 

  24. Fessenden, R.A.: Wireless Signaling. U.S. Patent N o. 706 740, Aug. 12, 1902

    Google Scholar 

  25. Hubers, H.-W.: Terahertz heterodyne receivers. IEEE Journal of Selected Topics in Quantum Electronics 14(2), 378–391 (2008)

    Google Scholar 

  26. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys., vol. 107, no. 11, pp. 111101-1-21, 2010.

    Google Scholar 

  27. Hirata, A., Kosugi, T., Meisl, N., Tsugumichi Shibata, T., Nagatsuma, T.: High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link. IEEE Trans. Microw. Thoe. Tech. 52(8), 1843–1850 (2004)

    Google Scholar 

  28. Hirata, A, Takahashi, H., Kukutsu, N., Kado, Y., Ikegawa, H., Nishikawa, H., Nakayama, T., Inada, T.: Transmission trial of television broadcast materials using 120-GHz-band wireless link. NTT Tech. Rev. 7(3), 1–6(2009)

    Google Scholar 

  29. Song, H.-J., Ajito, K., Muramoto, Y., Wakatsuki, A., Nagatsuma, T., Kukutsu, N.: 24 Gbit/s data transmission in 300 GHz band for future terahertz communications. Electronics Lettrs. 48(15), 953–954 (2012)

    Google Scholar 

  30. Takeuchi, J., Hirata, A., Takahashi, H., N. Kukutsu, N.: 10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-Band wireless link using a finline ortho-mode transducer. In Proc. Asia-Pacific Microw. Conf., Yokohama, Japan, Dec. 07-10, 2010, pp. 195–198 (2010)

    Google Scholar 

  31. Chung, T.J., Lee W-.H.: 10 Gbit/s wireless communication system at 300 GHz. ETRI Journal 35(3), 386–396(2013)

    Google Scholar 

  32. Ishigaki, K., Shiraishi, M., Suzuki, S., Asada, M., Nishiyama, N.,Arai, S.: Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunneling diodes. Electronics Letters 48(10),1–2 (2012)

    Google Scholar 

  33. Moeller, L., Federici, J., Su, K.: THz Wireless Communications: 2.5 Gb/s Error-free transmission at 625 GHz using a narrow-bandwidth 1 mW THz source. In Proc. 30th URSI general Assembly and Scientific Symposium, Istanbul, pp. 1–4(2011)

    Google Scholar 

  34. Priebe, S., Rey, S., Kurner, T.: broadband ray tracing propagation modeling to physical layer simulations of THz indoor communication systems. In Proc. Radio and wireless symposium, Austin, USA, Jan. 20-23, 2013, pp. 142–144 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumud Ranjan Jha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jha, K.R., Singh, G. (2014). Development in the Terahertz Communication System. In: Terahertz Planar Antennas for Next Generation Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-02341-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02341-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02340-3

  • Online ISBN: 978-3-319-02341-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics