Skip to main content

Abstract

Terahertz frequency (THz) band is coarsely defined as a portion of the electromagnetic spectrum, which extends from 0.1 to 10 THz and occupies an extremely large regime of the electromagnetic spectrum between the infrared and microwave bands. This far-infrared region is important because of the rich physical and chemical processes with spectrographic footprints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jha, K.R., Singh, G.: Terahertz planar antennas for future wireless communication: a technical review. Infrared Phys. Technol. 60(9), 71–80 (2013)

    Google Scholar 

  2. Woolard, D.L., Brown, R., Pepper, M., Kemp, M.: Terahertz frequency sensing and imaging:time of reckoning future applications?, IEEE Proc. 93(10), 1722–1743 (2005)

    Google Scholar 

  3. Koch, M.: Terahertz communication: a vision 2020. In: NATO Security through Science Series: Terahertz Frequency Detection and identification of Materials and Objects. Ed. by Miles, R.E., Zhang, X.C., Eisle, H., Krotkus, A. (Springer, Germany, 2000), 325–338 (2000)

    Google Scholar 

  4. Huang, K.C., Wang, Z.: Terahertz terabit wireless communication. IEEE Microw. Mag. 41(3), 108–116 (2011)

    Google Scholar 

  5. Tonouchi, M.: Cutting-edge terahertz technology. Nature Photonics 1(2), 97–105 (2007)

    Google Scholar 

  6. Daniels, R.C., Heath, R.W.: 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Veh. Tech. Mag. 2(3), 41–50 (2007)

    Google Scholar 

  7. Daniels, R.C., Murdock, J.N., Rappaport, T.S., Heath, R.W.: 60 GHz wireless: Up close and personal. IEEE Microw. Mag., vol. 11 (7), 44–50 (2010)

    Google Scholar 

  8. Frigyes, I., Bito, J., Hedler, B., C. –Horvath, L.: Applicability of the 50–90 GHz frequency bands in feeder networks. In Proc.: Eur. Antennas Propag. Conf. Berlin, Germany, March 23–27, 2009, pp. 336–340, (2009).

    Google Scholar 

  9. Chamberlain, J. M.: Where optics meets electronics: recent progress in decreasing the terahertz gap. Phil. Trans. R. Soc. Lond. A 362(1815), 199–213 (2004)

    Google Scholar 

  10. Federici, J., Moeller, L.: Review of terahertz and sub-terahertz wireless communications. J. Appl. Phys.107(11), 111101-1-21 (2010)

    Google Scholar 

  11. Piesiewicz, R., Kelvin-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebel, J., Kuner, T.: Short-range ultra broadband terahertz communication: concept and perspectives. IEEE Antennas Propag. Mag. 49(6), 24–39 (2007)

    Google Scholar 

  12. Toyoshima, M.: Trends in satellite communications and the role of optical free-space communications. J. Opt. Networking 4(6), 300–311 (2005)

    Google Scholar 

  13. Kleine–Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Milli. Terahz Waves 32(2), 143–171(2011)

    Google Scholar 

  14. Brown, E.R., McIntosh, K.A., Nichols, K.B., Dennis, C.L.: Photo mixing up to 3.8 THz in low temperature grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995)

    Google Scholar 

  15. Matsuura, M., Tani, M., Sakai, K.:Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett. 70, 559–561 (1997)

    Google Scholar 

  16. Schiller, S., Roth, B., Lewen, F., Ricken, O., Wiedner, M.C.: Ultra-narrow-line width continuous-wave THz source based on multiplier chains. Appl. Phys. B. 95(1), 55–61 (2009)

    Google Scholar 

  17. Mehdi, I., Siegel, P.H., Humphrey, D.A., Lee, T.H., Dengler, R.J., Oswald, J.E., Pease, A., Lin, R., Eisele, H., Zimmermann, R., Erickson, N.: An all solid-state 640 GHz sub-harmonic mixer. In Proc.: IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, Maryland, Jun. 07–12, 1998, pp. 403–406 (1998)

    Google Scholar 

  18. Carr, G.L., Martin, M.C., Mckinney, W.R., Jordan, K., Neil, G.R., Williams, G.P.: Very high power THz radiation sources. J. Biol. Phys. 29 (2–3), 319–325 (2003)

    Google Scholar 

  19. Williams, G.P.: Filling the THz gap-high power sources and applications. Rep. Prog. Phys. 69(2), 301–306(2006)

    Google Scholar 

  20. Mukherjee, P. Gupta, B.: Terahertz (THz) frequency sources and antennas-a brief review. Int. J. Infrared Milli. Waves 29(12), 1091–1102 (2008)

    Google Scholar 

  21. Minotani, T., Hirata, A., Nagatsuma, T.: A broadband 120-GHz Schottky-diode receiver for 10-Gbit/s wireless links. IEICE Trans. Electron. 86(8), 1501–1505 (2003)

    Google Scholar 

  22. Song, H.-J., Ajito, K., Hirata, A., Wakatsuki, A., Muramoto, Y., Furuta, T., Kukutsu, N., Nagatsuma, T., Kado, Y.: 8 Gbit/s wireless data transmission at 250 GHz. Electron. Lett. 45(22), 1121–1122 (2009)

    Google Scholar 

  23. Mukherjee, M., Mazumder, N., Roy, S.K., Goswami, K.: GaN IMPATT Diode: a photo-sensitive high power terahertz source. Semiconductor Scien. Tech. 22(12), 1258–1267 (2007)

    Google Scholar 

  24. Ren, Y., Hovenier, J.N., Higgins, R., Gao, J.R., Klapwiik, T.M., Chi, S.C., Bell, A., Klein, B., Williams, B.S., Kumar, S., Hu, Q.–,. Reno, J.L.: Terahertz heterodyne spectrometer using a quantum cascade laser. Appl. Phys. Lett. 97(16), 161105-161105/1-03 (2010)

    Google Scholar 

  25. Belkin, M.A., Capasso, F., Xie, F., Belyanin, A., Fischer, M., Wittmann, A., Faist, J.: Room temperature terahertz quantum cascade laser source based on interactive difference–frequency generation. Appl. Phys. Lett. 92(20), 201101-201101/1-03 (2008)

    Google Scholar 

  26. Kleub-Ostman, T., Pierz, K., Hein, G., Dawson, P., Koch, M.: Audio signal transmission over THz communication channeling using semiconductor modulator. Electron. Lett. 40(2), 124–125 (2004)

    Google Scholar 

  27. Hirata, A., Kosugi, T., Takahashi, H., Yamaguchi, R., Nakajima, F., Furuta, T., Ito, H., Sugahara, H., Sato, Y., Nagatsuma, T.: 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission. IEEE Trans. Microw. Theo. Tech. 54(5), 1937–1944 (2006)

    Google Scholar 

  28. Jastrow, C., Munter, K., Piesiewicz, R., Kurner, T., Koch, M., Kleub-Ostman, T.: 300 GHz transmission system. Elect. Lett. 44(3), 213–214 (2008)

    Google Scholar 

  29. Thomas, B., Maestrini, A., Gill, J., Lee, C., Lin, R., Mehdi, I., Maagt, P. de.: A broadband 835–900 GHz fundamental balanced mixer based on monolithic GaAs membranes Schottky diodes. IEEE Trans. Microw. Theo. Tech. 58(7), 1917–1924 (2010)

    Google Scholar 

  30. Cooper, K.B., Dengler, R.J., Chattopadhyay, G., Scheeht, E., Giu, J., Skatore, A., Mehdi, I., Siegel, P.H.: A high-resolution imaging radar at 580 GHz. IEEE Microw. Wire. Comp. Lett. 18(1), 64–66 (2008)

    Google Scholar 

  31. Berry, C.W., Hashemi, M.R., Unlu, M., Jarrahi. M.: Significant radiation enhancement in photoconductive terahertz emitters by incorporating plasmonic contact electrodes. Cornell University Library, arXiv preprint Xiv:1209.1680 (2012)

    Google Scholar 

  32. Mendis, R., Sydlo, C., Sigmund, J., Feiginov, M., Meissnev, P., Hastnagel, H.L.: Spectral characterization of broadband THz antennas by photoconductive mixing: towards optimal antenna design. IEEE Antenna Wirel. Propag. Lett. 4, 85–88 (2005)

    Google Scholar 

  33. Shimiza, N., Nagastuma, T.: Photodiode-integrated microstrip antenna array for sub-terahertz radiation. IEEE Photonic Tech. Lett. 18(6), 743–746 (2006)

    Google Scholar 

  34. Maki, K., Otani, C.: Terahertz beam steering and frequency tuning by using spatial dispersion of ultra-fast laser pulses. Opt. Express 16(14), 10158–10169 (2008)

    Google Scholar 

  35. Han, K., Nguyen, T.K., Park, I., Han, H.: Terahertz Yagi-Uda antenna for high input resistance. J. Infrared Milli. Tera.Waves 31(5), 441–454 (2010)

    Google Scholar 

  36. Hirata, A., Kosugi, T., Meisl, N., Shibata, T., Nagatsuma, T.: High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link. IEEE Trans. Microw. Theo. Tech. 52(8), 1843–1850 (2004)

    Google Scholar 

  37. Kraus, J.D., Marhefka, R.J.: Antennas for all applications. McGraw Hill, New York (2002)

    Google Scholar 

  38. Brown, E.R.: Fundamentals of terrestrial millimeter-wave and THz remote sensing. Int. J. High Speed Electron. Systems 13(4), 995–1097 (2003)

    Google Scholar 

  39. Rebeiz, G.M.: Millimeter-wave and terahertz integrated circuit antennas. Proc.: IEEE 80(11), 1748–1770 (1992)

    Google Scholar 

  40. Filipovic, D.F., Gearhart, S.S., Rebeiz, G.N.: Double-slot antennas on extended hemispherical and elliptical silicon lens dielectric lenses. IEEE Trans. Microw. Theo. Tech. 41(10), 1738–1749 (2003)

    Google Scholar 

  41. Boriskin, A.V., Sauleau, R., Nosich, A.I.: Performance of hemielliptical dielectric lens antennas with optimal edge illumination. IEEE Trans. Antennas Propag. 57(7), 2193–2198 (2009)

    Google Scholar 

  42. Formanek, F., Aurcle Burn, M.–, Umetsu, T., Omari, S., Yasuda, A.: Aspheric silicon lenses for terahertz photoconductive antennas. Appl. Phys. Lett., 94(2), 021113-021113/1-03 (2009)

    Google Scholar 

  43. Nato, A.: UWB non-dispersive radiation from the planarly fed leaky wave lens antenna-part I : theory and design. IEEE Trans. Antennas Propag. 58(7), 2238–2247 (2010)

    Google Scholar 

  44. Nato, A., Monni, S., Nennie, F.: UWB non-dispersive radiation from the planarly fed leaky wave lens antenna-part I : theory and design. IEEE Trans. Antennas Propag. 58(7), 2248–2258 (2010)

    Google Scholar 

  45. Pasqualini, D., Maci, S.: High-frequency analysis of integrated dielectric lens antennas. IEEE Trans. Antennas Propag. 52(3), 840–847 (2004)

    Google Scholar 

  46. Jha, K.R., Singh, G.: Ring resonator integrated hemi-elliptical lens antenna at terahertz frequency. Opt. Commun. 285(16) pp. 3445–3452 (2012)

    Google Scholar 

  47. Karttunen, A., Ala-Laurinaho, J., Sauleau, R., Raisanen, A.V.: A study of extended hemispherical lenses for a high gain beam-steering antenna. In Proc: European Conference on Antennas and Propagation, Barcelona, Spain, Apr. 12–16, 2010, pp. 1–5 (2010)

    Google Scholar 

  48. Gearhart, S.S., Ling, C.C., Rebeiz, G.M., Davee, H., Chin, G.: Integrated 119-μm linear corner-cube array. IEEE Microw. Guided Wave Lett. 1(7), 155–157(1991)

    Google Scholar 

  49. Zbitou, J., Minot, C., Beguard, X., Huyart, B.: Bow-tie wideband antenna design for CW photonic transmitters. Prog. Electromagn. Res. Symp., Cambridge, USA, July 2–6, 2008, pp. 431–435 (2008)

    Google Scholar 

  50. Lan, Y., Zeng, B., Zhang, H., Chen, B., Yang, Z.: Simulation of carbon nanotube THz antenna array. Int. J. Infrared Milli-Terahertz Waves 27(6), 871–877 (2006)

    Google Scholar 

  51. Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005)

    Google Scholar 

  52. Fumeaux, C., Boreman, G.D., Herrmann, W., Neubuhi, F.K., Rothuizen, H.: Spatial impulse response of lithographic infrared antennas. Appl. Phys. Lett. 38(1), 37–46 (1999)

    Google Scholar 

  53. Zmuidzinas, J., Betz, A.L., Boreiko, R.T.: A corner-reflector mixer for far-infrared wavelengths. Infrared Phys. 29(1), 119–131 (1989)

    Google Scholar 

  54. Miao, W., Delorme, Y., Dauply, F., Lefevre, R., Lecomte, B., Feret, A., Beaudin, G., Krieg, J.M., Zhang, W., Cheng, S.H., Shi, S.C.: Investigation of a 600-GHz membrane-based twin slot antenna for HEB mixers. In Proc. 19th Int. Symp. Space Tera. Tech., Gronigen, Netherland, Apr. 28-30, 2008, pp. 563–567 (2008)

    Google Scholar 

  55. Piesiewiez, R., Islam, M.N., Koch, M., Kumer, T.: Towards short-range terahertz communication systems: basic consideration. In: Proc. Iint. Conf. Applications Electromagnetics Communications, Dubrovnik, Croatia, Oct. 12–14, pp. 1–5 (2005)

    Google Scholar 

  56. Sharma, A., Dwivedi, V.K., Singh, G.: THz rectangular patch microstrip antenna design using photonic crystal as substrate. Prog. in Electromagn. Res. Symp., Cambridge, USA, July 2–6, 2008, pp. 161–165 (2008)

    Google Scholar 

  57. Singh, G.: Design consideration for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Physics and Technology 53(1), 17–22 (2010)

    Google Scholar 

  58. Jha, K.R., Singh, G.: Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system. J. Comp. Electron. 9(1), 31–41 (2010)

    Google Scholar 

  59. Bhattacharyya, A.K.: Characteristics of space and surface waves in a multilayered structure. IEEE Trans. Antennas Propag. 38(8), 1231–1238 (1990)

    Google Scholar 

  60. Gonzalo, R., Ederra, I., Mann, C., Maagt, P. de: Radiation properties of terahertz dipole antenna mounted on photonic crystal, Elect. Lett. 37(10), 613–614 (2001)

    Google Scholar 

  61. Jha, K.R., Singh, G.: Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numerical Modelling: Electronic Networks, Devices and Fields 24(5), 410–424 (2011)

    Google Scholar 

  62. Sharma, A., Dwivedi, V.K., Singh, G.: THz rectangular microstrip patch antenna on multilayered substrate for advanced wireless communication systems. Prog. in Electromagn. Res. Symp., Beijing, China, March 23–27, 2009, pp. 627–631 (2009)

    Google Scholar 

  63. DeJean, G.R., Tentzeris, M. M.: A new high-gain microstrip Yagi array antenna with a high front–to-back (F/B) ratio for WLAN and millimeter-wave applications. IEEE Trans. Antennas Propag. 55(2), 298–304 (2007)

    Google Scholar 

  64. Jha, K.R., Singh, G.: Microstrip patch array antenna on photonic crystal substrate at terahertz frequency. Infrared Physics and Technology 55(1), 32–39 (2012)

    Google Scholar 

  65. Wu, K., Cheng, Y.J., Djerafi, T., Hong, W.: Substrate-integrated millimeter-wave and terahertz antenna technology. IEEE Proc. 100(7), 2219–2232 (2012)

    Google Scholar 

  66. Jian, Y., Hong, W., Wu, K.: 94 GHz substrate integrated monopulse antenna array. IEEE Trans. Antennas Propag. 60(1), 121–129 (2012)

    Google Scholar 

  67. Awida M.H., Suleiman, S.H., Fathy, A. E.: Substrate-integrated cavity–backed patch arrays: a low-cost approach for bandwidth enhancement. IEEE Trans. Antennas Propag. 59(4), 1155–1163 (2011)

    Google Scholar 

  68. Memarzadeh, B., Mosallaei, H.: Layered plasmonic tripodes: an infrared frequency selective surface nanofilter. J. Opt. Soc. Am. B 29(4), 2347–2351 (2012)

    Google Scholar 

  69. Liu, Z-G., Ge, Z-C., Chen, X-Y.: Research progress on Fabry-Perot resonator antenna. Int. J. Zhejiang Univ. Sci. A10 (4), 583–588 (2009)

    Google Scholar 

  70. Jha, K.R., Singh, G.: Design of highly directive cavity type terahertz antenna for wireless communication. Optics Communications 284(20), 4996–5002 (2011)

    Google Scholar 

  71. Jha, K.R., Singh, G.: Prediction of highly directivity probe-fed microstrip antenna at terahertz frequency. International Journal of Numerical Modeling: Electronic Network, Devices and Fields 25(2), 175–191 (2012)

    Google Scholar 

  72. Debogovic, T., Hrabar, S., Perruisseau-Carrier, J.: Broadband Fabry-Perot radiation based on non-Foster cavity boundary. Electrn. Lett. 44(4), 1–2 (2013)

    Google Scholar 

  73. Lubecke, V., Mizuno, K., Rebeiz, G.: Micromachining for terahertz applications. IEEE Trans. Microw. Theo. Tech. 46(11), 1821–1831 (1998)

    Google Scholar 

  74. Nemat-Nasser, S.C., Amirkhizi, A.V., Padilla, W., Basov, D.N., Nemat-Nasser, S., Bruzewics, D., Whitesides, G.: Terahertz plasmonic composites. Physics Rev. E 75, 036614/1-7 (2007)

    Google Scholar 

  75. Kadoya, Y., Onuma, M., Yanagi, S., Ohkubo, T., Sato, N., Kitagawa, J.: THz wave propagation on strip-lines: devices, properties, and applications. Radioengineering 17(2), 48–55 (2008)

    Google Scholar 

  76. Raisanen, A.V.: Challenges of terahertz. Proc. 2nd European Conf. Antennas Propag., Edinburgh, UK, Nov. 11–16, 2007, pp. 1–4 (2007)

    Google Scholar 

  77. Raisanen, A.V., Ala-Laurinaho, J., Karttunen, A., Mallat, J., Pousi, P., Tamminen, A.: Recent activities in antenna measurements at mm- and submm-wavelengths at Aalto University. In: Proc. 5th Europ. Conf. Antennas Propag., Rome, Italy, Apr. 11–15, 2011, pp. 3543–3545 (2011)

    Google Scholar 

  78. Niu, T., Withayachumnankul, W., Ung, B.S.-Y., Menekse, H., Bhaskaran, M., Sriram, S., Fumeaux, C.: Reflectarray antennas for terahertz communications. Cornell University Library, arXiv:1210.0653 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumud Ranjan Jha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jha, K.R., Singh, G. (2014). Terahertz Sources and Antennas. In: Terahertz Planar Antennas for Next Generation Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-02341-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02341-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02340-3

  • Online ISBN: 978-3-319-02341-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics