Skip to main content

Volumetric T-spline Construction Using Boolean Operations

  • Conference paper

Summary

In this paper, we present a novel algorithm for constructing a volumetric T-spline from B-reps inspired by Constructive Solid Geometry (CSG) Boolean operations. By solving a harmonic field with proper boundary conditions, the input surface is automatically decomposed into regions that are classified into two groups represented, topologically, by either a cube or a torus. We perform two Boolean operations (union and difference) with the primitives and convert them into polycubes through parametric mapping. With these polycubes, octree subdivision is carried out to obtain a volumetric T-mesh, and sharp features detected from the input model are also preserved. An optimization is then performed to improve the quality of the volumetric T-spline. Finally we extract trivariate Bézier elements from the volumetric T-spline, and use them directly in isogeometric analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://en.wikipedia.org/wiki/constructive_solid_geometry

  2. http://en.wikipedia.org/wiki/polycube

  3. Adams, B., Dutré, P.: Interactive boolean operations on surfel-bounded solids. ACM Trans. Graph. 22(3), 651–656 (2003)

    Article  Google Scholar 

  4. Aigner, M., Heinrich, C., Juttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.-V.: Swept volume parameterization for isogeometric analysis. In: IMA International Conference on Mathematics of Surfaces XIII, pp. 19–44 (2009)

    Google Scholar 

  5. Bazilevs, Y., Akkerman, I., Benson, D.J., Scovazzi, G., Shashkov, M.J.: Isogeometric analysis of lagrangian hydrodynamics. Journal of Computational Physics 243, 224–243 (2013)

    Article  Google Scholar 

  6. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering 199(5-8), 229–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. Wiley (2009)

    Google Scholar 

  8. Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering 195(41-43), 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Escobar, J.M., Cascón, J.M., Rodríguez, E., Montenegro, R.: A new approach to solid modeling with trivariate T-splines based on mesh optimization. Computer Methods in Applied Mechanics and Engineering 200(45-46), 3210–3222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldman, R., Lyche, T.: Knot insertion and deletion algorithms for B-spline curves and surfaces. Society for Industrial and Applied Mathematics–Philadelphia (1993)

    Google Scholar 

  11. Gu, X., Wang, Y., Yau, S.: Volumetric harmonic map. Communications in Information and Systems 3(3), 191–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guerra, C.A.R.: Simultaneous untangling and smoothing of hexahedral meshes. Master’s thesis, University PolyTècnica De Catalunya, Barcelona Spain (2010)

    Google Scholar 

  13. Hatcher, A.: Pants decomposition of surfaces. arXiv:math/9906084 (1999)

    Google Scholar 

  14. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, B., Li, X., Wang, K., Qin, H.: Generalized polycube trivariate splines. In: Shape Modeling International Conference, pp. 261–265 (2010)

    Google Scholar 

  16. Li, B., Li, X., Wang, K., Qin, H.: Surface mesh to volumetric spline conversion with Generalized Poly-cubes. IEEE Transactions on Visualization and Computer Graphics 99, 1–14 (2012)

    Article  Google Scholar 

  17. Li, W., Ray, N., Lévy, B.: Automatic and interactive mesh to T-spline conversion. In: Eurographics Symposium on Geometry Processing, pp. 191–200 (2006)

    Google Scholar 

  18. Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T., Hughes, T.J.R.: Robustness of isogeometric structural discretizations under severe mesh distortion. Computer Methods in Applied Mechanics and Engineering 199(5-8), 357–373 (2010)

    Article  MATH  Google Scholar 

  19. Mitchell, A., Tautges, T.J.: Pillowing doublets: refining a mesh to ensure that faces share at most one edge. In: 4th International Meshing Roundtable, pp. 231–240 (1995)

    Google Scholar 

  20. Piegl, L.A., Tiller, W.: The NURBS Book (Monographs in Visual Communication), 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  21. Qian, J., Zhang, Y., Wang, W., Lewis, A.C., Qidwai, M.A., Geltmacher, A.B.: Quality improvement of non-manifold hexahedral meshes for critical feature determination of microstructure materials. International Journal for Numerical Methods in Engineering 82(11), 1406–1423 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Schillinger, D., Dedè, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering 249-252, 116–150 (2012)

    Article  Google Scholar 

  23. Scott, M.A., Borden, M.J., Verhoosel, C.V., Sederberg, T.W., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of T-splines. International Journal for Numerical Methods in Engineering 88(2), 126–156 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.: T-spline simplification and local refinement. In: ACM SIGGRAPH, pp. 276–283 (2004)

    Google Scholar 

  25. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Transactions on Graphics 22(3), 477–484 (2003)

    Article  Google Scholar 

  26. Smith, J.M., Dodgson, N.A.: A topologically robust algorithm for boolean operations on polyhedral shapes using approximate arithmetic. Computer-Aided Design 39(2), 149–163 (2007)

    Article  Google Scholar 

  27. Wang, H., He, Y., Li, X., Gu, X., Qin, H.: Polycube splines. In: Symposium on Solid and Physical Modeling, pp. 241–251 (2007)

    Google Scholar 

  28. Wang, K., Li, X., Li, B., Xu, H., Qin, H.: Restricted trivariate polycube splines for volumetric data modeling. IEEE Transactions on Visualization and Computer Graphics 18, 703–716 (2012)

    Article  Google Scholar 

  29. Wang, W., Zhang, Y., Liu, L., Hughes, T.J.R.: Solid T-spline construction from boundary triangulations with arbitrary genus topolog. Computer Aided Design 45, 351–360 (2013)

    Article  MathSciNet  Google Scholar 

  30. Wang, W., Zhang, Y., Scott, M.A., Hughes, T.J.R.: Converting an unstructured quadrilateral mesh to a standard T-spline surface. Computational Mechanics 48, 477–498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, W., Zhang, Y., Xu, G., Hughes, T.J.R.: Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline. Computational Mechanics 50(1), 65–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Computer-Aided Design 45(2), 395–404 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Y., Bajaj, C.L., Xu, G.: Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Communications in Numerical Methods in Engineering 25, 1–18 (2009)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C.L., Hughes, T.J.R.: Patientspeci c vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 196(29-30), 2943–2959 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y., Wang, W., Hughes, T.J.R.: Solid T-spline construction from boundary representations for genus-zero geometry. Computer Methods in Applied Mechanics and Engineering 249-252, 185–197 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, L., Zhang, Y., Hughes, T.J.R., Scott, M.A., Sederberg, T.W. (2014). Volumetric T-spline Construction Using Boolean Operations. In: Sarrate, J., Staten, M. (eds) Proceedings of the 22nd International Meshing Roundtable. Springer, Cham. https://doi.org/10.1007/978-3-319-02335-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02335-9_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02334-2

  • Online ISBN: 978-3-319-02335-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics