Skip to main content

Multiblock Structured Mesh Generation for Turbomachinery Flows

  • Conference paper
Proceedings of the 22nd International Meshing Roundtable

Abstract

Multiblock structured meshes offer better computational efficiency than the unstructured meshes which, on the other hand, are more flexible for complex geometries. The multiblock structured meshing could be more useful if the partitioning of the domain can be performed automatically. In this paper, we consider various automated blocking approaches for some turbomachinery zones. We then assess these methods by employing adjoint based error estimation which shows that medial axis based methods perform better than the other approaches like Cartesian fitting. A hybrid approach is also demonstrated for the cases where the existing automatic blocking techniques might not be useful. New blocking templates can also be generated using the techniques applied in the work presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blacker, T.: The Cooper tool. In: 5th International Meshing Roundtable, SAND 95-2130, Sandia National Laboratories. Citeseer (1996)

    Google Scholar 

  2. Blacker, T., Myers, R.J.: Seams and wedges in plastering: A 3D hexahedral mesh generation algorithm. Engineering with Computers 2, 83–93 (1993)

    Article  Google Scholar 

  3. Blum, H.: A transformation for extracting new descriptions of shape. In: Models for the Perception of Speech and Visual Form, pp. 362–380 (1967)

    Google Scholar 

  4. Chesshire, G., Henshaw, W.D.: Composite overlapping meshes for the solution of partial differential equations. Journal of Computational Physics 90(1), 1–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dannenhoffer, J.: A block-structuring technique for general geometries. In: 29th AIAA Aerospace Sciences Meeting, Reno, Nevada (1991)

    Google Scholar 

  6. Fidkowski, K., Darmofal, D.: Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA Journal 49(4), 673–694 (2011)

    Article  Google Scholar 

  7. Giles, M.B., Duta, M.C., Müller, J.-D., Pierce, N.A.: Algorithm developments for discrete adjoint methods. AIAA Journal 41(2), 198–205 (2003)

    Article  Google Scholar 

  8. Giles, M.B., Pierce, N.A.: Adjoint error correction for integral outputs. In: Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol. 25. Springer (2002)

    Google Scholar 

  9. Henshaw, W.D.: Automatic grid generation. Acta Numerica, 1–66 (2002)

    Google Scholar 

  10. Kolšek, T., Šubelj, M., Duhovnik, J.: Generation of block-structured grids in complex computational domains using templates. Finite Elements in Analysis and Design 39(12), 1139–1154 (2003)

    Article  Google Scholar 

  11. Malcevic, I.: Automated blocking for structured CFD gridding with an application to turbomachinery secondary flows. In: 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, AIAA Paper No. AIAA 2011-3049 (2011)

    Google Scholar 

  12. Moinier, P.: Algorithm developments for an unstructured viscous flow solver. PhD thesis, Oxford University (1999)

    Google Scholar 

  13. Owen, S.J.: A survey of unstructured mesh generation technology. In: 7th International Meshing Roundtable, vol. 3 (1998)

    Google Scholar 

  14. Owen, S.J., Saigal, S.: H-morph: An indirect approach to advancing front hex meshing. International Journal for Numerical Methods in Engineering 49(1-2), 289–312 (2000)

    Article  MATH  Google Scholar 

  15. Price, M.A., Armstrong, C.G.: Hexahedral mesh generation by medial surface subdivision: Part II. solids with flat and concave edges. International Journal for Numerical Methods in Engineering 40(1), 111–136 (1997)

    Article  Google Scholar 

  16. Price, M.A., Armstrong, C.G., Sabin, M.A.: Hexahedral mesh generation by medial surface subdivision: Part I. solids with convex edges. International Journal for Numerical Methods in Engineering 38(19), 3335–3359 (1995)

    Article  MATH  Google Scholar 

  17. Rigby, D.L.: Topmaker: A technique for automatic multi-block topology generation using the medial axis. NASA/CR, 213044 (2004)

    Google Scholar 

  18. Roy, C.J.: Review of discretization error estimators in scientific computing. AIAA Paper, 126: 2010 (2010)

    Google Scholar 

  19. Shaw, J.A., Weatherill, N.P.: Automatic topology generation for multiblock grids. Applied Mathematics and Computation 52(2), 355–388 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shephard, M.S., Georges, M.K.: Automatic three-dimensional mesh generation by the finite octree technique. International Journal for Numerical methods in Engineering 32(4), 709–749 (1991)

    Article  MATH  Google Scholar 

  21. Steger, J.L., Dougherty, F.C., Benek, J.A.: A Chimera grid scheme. In: Advances in Grid Generation: Presented at Applied Mechanics, Bioengineering, and Fluids Engineering Conference, Houston, Texas, June 20-22, vol. 5, p. 59. American Society of Mechanical Engineers (1983)

    Google Scholar 

  22. Tam, T.K.H., Armstrong, C.G.: 2D finite element mesh generation by medial axis subdivision. Advances in Engineering Software and Workstations 13(5), 313–324 (1991)

    Article  MATH  Google Scholar 

  23. Tautges, T.J., Blacker, T., Mitchell, S.A.: The whisker weaving algorithm: A connectivity-based method for constructing all-hexahedral finite element meshes. International Journal for Numerical Methods in Engineering 39(19), 3327–3350 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tucker, P.G.: On the unstructured solution of Eikonal and Hamilton-Jacobi equations and mesh generation (unpublished)

    Google Scholar 

  25. Tucker, P.G.: Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics 190(1), 229–248 (2003)

    Article  MATH  Google Scholar 

  26. Venditti, D.A., Darmofal, D.L.: Grid adaptation for functional outputs: Application to two-dimensional inviscid flows. Journal of Computational Physics 176(1), 40–69 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xia, H., Tucker, P.G.: Finite volume distance field and its application to medial axis transforms. International Journal for Numerical Methods in Engineering 82(1), 114–134 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Xia, H., Tucker, P.G.: Fast equal and biased distance fields for medial axis transform with meshing in mind. Applied Mathematical Modelling 35(12), 5804–5819 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaib Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ali, Z., Tucker, P.G. (2014). Multiblock Structured Mesh Generation for Turbomachinery Flows. In: Sarrate, J., Staten, M. (eds) Proceedings of the 22nd International Meshing Roundtable. Springer, Cham. https://doi.org/10.1007/978-3-319-02335-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02335-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02334-2

  • Online ISBN: 978-3-319-02335-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics