Skip to main content

An Integrated Autonomous Navigation and Decision-Making Architecture for Planetary Exploration Rovers

  • Conference paper
  • First Online:
International Technology Robotics Applications

Abstract

In recent years, there has been an increasing research into and experience with autonomy and automation of space missions, such as Earth observation, space station operations, planetary robotic exploration and deep space probes. Capabilities of such systems have grown exponentially, leading to the need of the development of autonomy for the space and ground systems, driven by the benefits that autonomy brings in terms of reducing mission operational costs, enabling long term missions and maximizing scientific return. In the area of planetary rovers the robotics autonomy must be achieved by implementing autonomous navigation capabilities in the functional layer and autonomous decision-making systems in the deliberative layer. In this paper, we propose a goal-oriented autonomous controller architecture over a functional layer based in the classical GNC (guidance-navigation-control) approach. The structure of this paper is the following:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenblatt JY et al (2002) A behavior-based architecture for autonomous underwater exploration. J Inform Sci 145:1–2

    Google Scholar 

  2. Albus JS, Lumia R, Fiala J, Wavering A (1989) NASREM the NASA/NBS standard reference model for telerobot control system architecture. Technical Note 1235, National Institute of Standards and Technology

    Google Scholar 

  3. Veres SM (2005) Principles, architectures and trends in autonomous control. In: Autonomous agents in control, 2005. The IEE Seminar on (Ref. No. 2005/10986), pp 1–9

    Google Scholar 

  4. Eberbach E (2008) Approximate reasoning inthe algebra of bounded rational agents. J Approximate Reasoning 49:316–330

    Google Scholar 

  5. Brooks RA (1990) Elephants don’t play chess. Robot Auton Syst 6:139–159

    Google Scholar 

  6. Flanagan C, Toal D, Leyden M (2003) Subsumption and fuzzy-logic, experiments in behavior-based control of mobile robots. Int J Smart Eng Syst Des 5:25–39

    Google Scholar 

  7. Brooks RA (1986) A robust Layered control system for a mobile robot. IEEE J Robot Autom 2:14–23

    Google Scholar 

  8. Peter Bonasso R, James Firby R, Gat E, Kortenkamp D, Miller DP, Slack MG (1997) Experiences with an architecture for intelligent, reactive agents. J Exp Theor Artif Intell 9(2, 3):237–256

    Google Scholar 

  9. Arkin RC, Balch T (1991) AuRA: principles and practice in review. J Exp Theor Artif Intell 9(2):175–189. ISSN: 1362-3079

    Google Scholar 

  10. NASA/JPL CLARAty Robotic Software. (http://claraty.jpl.NASA.gov/man/overview/index.php)

  11. Van Winnendael M, ESA/ESTEC technical note: key aspects of onboard software and ground control of planetary rovers, Draft 0.12

    Google Scholar 

  12. Flexible Automation Monitoring and Operation User Station (FAMOUS), Executive summary by space applications services

    Google Scholar 

  13. Alami R, Chatila R, Fleury S, Ghallab M, Ingrand F (1998) An architecture for autonomy. Int J Robot Res 17:315–337. (LAAS-CNRS)

    Google Scholar 

  14. Montemerlo M, Becker J, Bhat S (2008) Junior: The stanford entry in the urban challenge. J Field Robot 25:163–230

    Google Scholar 

  15. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:35–45

    Google Scholar 

  16. Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom 2(1):14–23

    Google Scholar 

  17. Muscettola N, Pandurang Nayak P, Pell B, Williams BC (1998) Remote agent: to boldly go where no AI system has gone before. Artif Intell 103:5–47 (Elsevier)

    Google Scholar 

  18. Willowgarage’s web-site. http://www.willowgarage.com/pages/software/trex

  19. Muscettola N, Dorais GA, Fry C, Levinson R (2002) IDEA: Planning at the core of autonomous reactive agents. In: Proceeding of the 3rd international NASA workshop on planning and scheduling for space

    Google Scholar 

  20. Ceballos A, Medina A, Ocón J, van Winnendael M (2012) Towars goal-oriented space robotics operations using autonomous controllers”. In: i-SAIRAS

    Google Scholar 

  21. Fleury S, Herrb M, Chatila R (1997) GenoM: a tool for the specification and the implementation of operating modules in a distributed robot architecture. In: International conference on intelligent robots and systems, pp 842-848, Grenoble

    Google Scholar 

  22. Bensalem S, de Silva L, Gallien M, Ingrand F, Yan R (2010) Rock solid software: a verifiable and correct-by-construction controller for rover and spacecraft functional levels. In: International symposium on artificial intelligence, robotics and automation for space, Sapporo

    Google Scholar 

  23. Ceballos A, De Silva L, Herrb M, Ingrand F, Mallet A, Medina A, Prieto M (2011) GenoM as a robotics framework for planetary rover surface operations. In: ASTRA 2011 Workshop, Noordwijk, The Netherlands, 12–14 April 2011

    Google Scholar 

  24. Medina A, Pradalier C, Paar G, Merlo A, Ferraris S (2011) A servicing rover for planetary outpost assembly. In: ASTRA

    Google Scholar 

  25. Medina A, Pradalier C, Paar G, Pensavalle E, Didot F, Schoonejans P (2010) Integrated autonomous navigation in a large planetary exploration and service rover. In: i-SAIRAS

    Google Scholar 

  26. Paar G, Woods M, Gimkiewicz C, Labrosse F, Medina A, Tyler L, Barnes DP, Fritz G, Kapellos K (2012) PRoViScout: a planetary scouting rover demonstrator. In: Proceeding SPIE 8301, intelligent robots and computer vision XXIX: algorithms and techniques, 83010A, 23 Jan 2012. doi:10.1117/12.906122

  27. EU FP7-SPACE-2009-1 241523 Proviscout web site. http://www.proviscout.eu

  28. robuCART TT – robosoft web site. http://www.doc-center.robosoft.com/@api/deki/files/6209/=robuCARTT_web1.pdf

  29. Labrosse F (2006) The visual compass: performance and limitations of an appearance-based method. J Field Robot 23(10):913–941http://www6.uniovi.es /~feli /pdf/libromdt.pdf

    Article  Google Scholar 

  30. Felicísimo AM (1994) Digital models of the terrain. In: Pentalfa (ed). ISBN 84-7848-475-2. http://www6.uniovi.es /~feli /pdf/libromdt.pdf

  31. García A, Barrientos A, Medina A, Colmenarejo P, Mollinedo L, Rossi C (2011) 3D path planning using a fuzzy logic navigational map for planetary surface rovers. In: ASTRA

    Google Scholar 

  32. Exploring Surface Texture (2003) A fundamental guide to the measurement of surface finish. Taylor Hobson Limited, England

    Google Scholar 

  33. Mardia KV (1972) Statistics of directional data. Academic Press, London

    MATH  Google Scholar 

  34. Sugeno M (1985) Industrial applications of fuzzy control, Elsevier Science publishing company, New York

    Google Scholar 

  35. Steven M, Valle L (2006) Planning algorithms. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. AbuMeteir H, Issa W (2010) Path planning of autonomous mobile robot, Islamic University of Gaza, Gaza

    Google Scholar 

  37. Ferguson D, Lickhachev M, Stentz A (2005) A guide to heuristic-based path planning. Carnegie Mellon University, Pittsburgh

    Google Scholar 

  38. Likhachev M, Koeing S (2002) D* Lite, Carnegie Mellon UniversityM, Georgia Institute of Technology, Pittsburgh, Atlanta

    Google Scholar 

  39. Likhachev M, Gordon G, Thrun S (2003) ARA*: Anytime A* with provable bounds on sub-optimality, Carnegie Mellon University, Pittsburgh

    Google Scholar 

  40. Guixé P, Binet G, Medina A (2012) Path-planning using state lattices primitives for planetary surface rovers. In: i-SAIRAS

    Google Scholar 

  41. Binet G, Krenn R, Bemporad A (2012) Model predictive control applications for planetary rovers. In: i-SAIRAS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Medina, A., Binet, G., Colmenarejo, P. (2014). An Integrated Autonomous Navigation and Decision-Making Architecture for Planetary Exploration Rovers. In: González Alonso, I. (eds) International Technology Robotics Applications. Intelligent Systems, Control and Automation: Science and Engineering, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-319-02332-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02332-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02331-1

  • Online ISBN: 978-3-319-02332-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics