Skip to main content

Effectiveness of Argon Nanobubbles in Realizing Enhanced Optical Sensitization for Laser-induced Breakdown Spectroscopy

  • Chapter
  • First Online:
Sensing Technology: Current Status and Future Trends I

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 7))

  • 1547 Accesses

Abstract

This chapter describes the validity and usefulness of laser-induced breakdown spectroscopy (LIBS) measurements enhanced by argon nanobubbles. The use of argon nanobubbles in the LIBS system revealed higher sensitivity as compared to other conventional methods that are used for LIBS solution measurements. To create the nanobubbles, argon gas was pumped into water, forming bubbles less than 100 nm in diameter. The solution of dissolved argon bubbles was used to measure (1) the atomic spectrum of hydrogen (λ = 656 nm) from the water molecules (H2O) in the solution, and (2) the atomic spectrum of nitrogen (λ = 399.5) from the air bubbles in the solution. These experimental results demonstrated that argon nanobubbles are able to instantaneously retain plasma during the excitation/relaxation period, which is essential for highly sensitive spectral measurements. The intensity of nitrogen spectra (measurement (2)) obtained from the argon-air nanobubbles in water was much higher than that of the spectra obtained from normal LIBS air measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, Reheating of a laser-produced plasma by a second pulse laser. Appl. Spectrosc. 45, 1419–1423 (1991)

    Article  Google Scholar 

  2. R. Nyga, W. Neu, Double-pulse technique for optical emission spectroscopy of ablation plasmas of samples in liquids. Opt. Lett. 18, 747–749 (1993)

    Article  Google Scholar 

  3. R. Sattmann, V. Sturm, R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses. J. Phys. D. 28, 2181–2187 (1995)

    Article  Google Scholar 

  4. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, Determination colloidal iron in water by laser induced breakdown spectroscopy with two sequential laser pulses. Anal. Chem. 68, 2981–2986 (1996)

    Article  Google Scholar 

  5. A.E. Pichahchy, D.A. Cremers, M.J. Ferris, Elemental analysis of metals under water using laser-induced breakdown spectroscopy. Spectrochim. Acta. B 52, 25–39 (1997)

    Article  Google Scholar 

  6. D.N. Stratis, K.L. Eland, S.M. Angel, Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission. Appl. Spectrosc. 54, 1270–1274 (2000)

    Article  Google Scholar 

  7. D.N. Stratis, K.L. Eland, S.M. Angel, Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma. Appl. Spectrosc. 55, 1297–1303 (2001)

    Article  Google Scholar 

  8. P. Yaroshchyk, R.J.S. Morrison, D. Body, B.L. Chadwick, Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS. Spectrochim. Acta B Atomic Spectr. 60, 1482–1485 (2005)

    Article  Google Scholar 

  9. A. M. Popov, F. Colao, R. Fantoni, Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils. J. Anal. Atomic Spectr. 25(6), 837–848 (2010)

    Google Scholar 

  10. A. Kumar, F.Y. Yueh, T. Miller, J.P. Singh, Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a meinhard nebulizer. Appl. Opt. 42, 6040–6046 (2003)

    Article  Google Scholar 

  11. C. Favre et al., White-light nanosource with directional emission. Phys. Rev. Lett. 89, 035002 (2002)

    Article  Google Scholar 

  12. V. Boutou, C. Favre, S.C. Hill, Y.L. Pan, R.K. Chang, J.-P. Wolf, Backward enhanced emission from multiphoton processes in aerosols. Appl. Phys. B Lasers Opt. 75, 145–152 (2002)

    Article  Google Scholar 

  13. F. Courvoisier, V. Boutou, C. Favre, S.C. Hill, J.-P. Wolf, Plasma formation dynamics within a water microdroplet on femtosecond time scales. Opt. Lett. 28, 206–208 (2003)

    Article  Google Scholar 

  14. S. Ikezawa, M. Wakamatsu, J. Pawlat, T. Ueda, Improvement of a micro-droplet guiding technique for laser-induced breakdown spectroscopy. IEEJ Trans. Sensors Micromach. 128, 297–301 (2008)

    Article  Google Scholar 

  15. S. Ikezawa, M. Wakamatsu, J. Pawlat, T. Ueda, Sensing system for multiple measurements of trace elements using laser-induced breakdown spectroscopy. IEEJ Trans. Sensors Micromach. 129, 115–119 (2009)

    Article  Google Scholar 

  16. A. Kuwako, Y. Uchida, K. Maeda, Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy. Appl. Opt. 42, 6052–6056 (2003)

    Article  Google Scholar 

  17. M. Wakamatsu, T. Ueda, H. Hayashi, Particle element and size measurement using LIBS. Proc. SICE Ann. Conf. 2, 1191–1195 (2003)

    Google Scholar 

  18. M. Wakamatsu, S. Ikezawa, T. Ueda, Particle element and size simultaneous measurement using LIBS. IEEJ Trans. Sensors Micromach. 127, 397–402 (2007)

    Article  Google Scholar 

  19. S. Ikezawa, M. Wakamatsu, Y. L’vovich Zimin, J. Pawlat, T. Ueda, Multi-spectral analytical systems using LIBS and LII techniques, ed. by S.C. Mukhopadhyay, A. Lay-Ekuakille, A. Fuchs, New Developments and Applications in Sensing Technology. Lecture Notes in Electrical Engineering, vol. 83 (Springer, 2011) pp. 207–232

    Google Scholar 

  20. M. Takahashi, E. Izawa, J. Etou, T. Ohtani, Kinetic characteristic of bubble nucleation in superheated water using fluid inclusions. J. Phys. Soc. Jpn. 71(9), 2174–2177 (2002)

    Article  Google Scholar 

  21. M. Takahashi et al., Effect of shrinking micro-bubble on gas hydrate formation. J. Phys. Chem. B 107(10), 2171–2173 (2003)

    Article  Google Scholar 

  22. M. Takahashi, The ζ potential of microbubbles in aqueous solutions – Electrical property of the gas-water interface. J. Phys. Chem. B, 109, 21858–21864 (2005)

    Google Scholar 

  23. M. Takahashi, K. Chiba, P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 111(6), 1343–1347 (2007)

    Article  Google Scholar 

  24. M. Takahashi, K. Chiba, P. Li, Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. J. Phys. Chem. B 111(39), 11443–11446 (2007)

    Article  Google Scholar 

  25. A.J. Walton, G.T. Reynolds, Sonoluminescence. Adv. Phys. 33, 595–660 (1984)

    Article  Google Scholar 

  26. R.E. Verrall, C.M. Sehgal, Sonoluminescence. Ultrasonics 25, 29–30 (1987)

    Article  Google Scholar 

  27. S.J. Doktycz, K.S. Suslick, Interparticle collisions driven by ultrasound. Science 247, 1067–1069 (1990)

    Article  Google Scholar 

  28. B.P. Barber, S.J. Putterman, Observation of synchronous picosecond sonoluminescence. Nature 352, 318–320 (1991)

    Article  Google Scholar 

  29. M. L. Nuckols, J. Giblo, J. L. Wood-Putnam, Thermal Characteristics of Diving Garments When Using Argon as a Suit Inflation Gas, in Proceedings of the Oceans 08 MTS/IEEE Quebec, Canada Meeting (MTS/IEEE), 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ikezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ikezawa, S., Ueda, T. (2014). Effectiveness of Argon Nanobubbles in Realizing Enhanced Optical Sensitization for Laser-induced Breakdown Spectroscopy. In: Mason, A., Mukhopadhyay, S., Jayasundera, K., Bhattacharyya, N. (eds) Sensing Technology: Current Status and Future Trends I. Smart Sensors, Measurement and Instrumentation, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-02318-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02318-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02317-5

  • Online ISBN: 978-3-319-02318-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics