• Andreas E. Kyprianou
Part of the EAA Series book series (EAAS)


In this brief introductory chapter, we outline the basic context of these lecture notes. In particular, we explain what we understand by so-called Gerber–Shiu theory and the role that it has played in classical ruin theory.


Compound Poisson Process Surplus Process Strong Markov Property Foundational Work Introductory Chapter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albrecher, H., Borst, S., Boxma, O., Resing, J.: Ruin excursions, the G/G/∞ queue, and tax payments in renewal risk models. J. Appl. Probab. 48A, 3–14 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  2. Albrecher, H., Hipp, C.: Lundberg’s risk process with tax. Blaetter der DGVFM 28, 13–28 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  3. Albrecher, H., Renaud, J.-F., Zhou, X.: A Lévy insurance risk process with tax. J. Appl. Probab. 45, 363–375 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  4. Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. Advanced Series on Statistical Science & Applied Probability, vol. 14. World Scientific, Hackensack (2010) zbMATHGoogle Scholar
  5. Asmussen, S., Taksar, M.: Controlled diffusion models for optimal dividend pay-out. Insurance Math. Econom. 20, 1–15 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  6. Avram, F., Palmowski, Z., Pistorius, M.R.: On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 17, 156–180 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  7. Azcue, P., Muler, N.: Optimal reinsurance and dividend distribution policies in the Cramér–Lundberg model. Math. Finance 15, 261–308 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  8. Cramér, H.: Collected Works, vol. I. Edited and with a preface by Anders Martin-Löf. Springer, Berlin (1994a) zbMATHGoogle Scholar
  9. Cramér, H.: Collected Works, vol. II. Edited and with a preface by Anders Martin-Löf. Springer, Berlin (1994b) zbMATHGoogle Scholar
  10. de Finetti, B.: Su un’impostazione alternativa della teoria collettiva del rischio. Transactions of the XVth International Congress of Actuaries 2, 433–443 (1957) Google Scholar
  11. Dickson, D.C.M.: Insurance Risk and Ruin. Cambridge University Press, Cambridge (1999) Google Scholar
  12. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (1997) CrossRefzbMATHGoogle Scholar
  13. Feller, W.: An Introduction to Probability Theory and Its Applications, vol II, 2nd edn. Wiley, New York (1971) zbMATHGoogle Scholar
  14. Gerber, H.U.: Entscheidungskriterien für den zusammengesetzten Poisson-Prozess. Schweiz. Verein. Versicherungsmath. Mitt. 69, 185–228 (1969) zbMATHGoogle Scholar
  15. Gerber, H.U.: Games of economic survival with discrete and continuous income processes. Operations Research 20, 37–45 (1972) CrossRefzbMATHGoogle Scholar
  16. Gerber, H.U., Shiu, E.S.W.: The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin. Insurance Math. Econom. 21, 129–137 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  17. Gerber, H.U., Shiu, E.S.W.: On the time value of ruin. North Am. Actuar. J. 2, 48–78 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  18. Gerber, H.U., Shiu, E.S.W.: On optimal dividend strategies in the compound Poisson model. North Am. Actuar. J. 10, 76–93 (2006b) MathSciNetCrossRefGoogle Scholar
  19. Jeanblanc, M., Shiryaev, A.N.: Optimization of the flow of dividends. Russian Math. Surveys 50, 257–277 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  20. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Probability and Its Applications. Springer, New York (2002) zbMATHGoogle Scholar
  21. Kyprianou, A.E., Loeffen, R.L., Pérez, J.L.: Optimal control with absolutely continuous strategies for spectrally negative Lévy processes. J. Appl. Probab. 49, 150–166 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  22. Kyprianou, A.E., Ott, C.: Spectrally negative Lévy processes perturbed by functionals of their running supremum. J. Appl. Probab. 49, 1005–1014 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  23. Kyprianou, A.E., Zhou, X.: General tax structures and the Lévy insurance risk model. J. Appl. Probab. 46, 1146–1156 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  24. Kyprianou, A.E., Rivero, V., Song, R.: Convexity and smoothness of scale functions and de Finetti’s control problem. J. Theoret. Probab. 23, 547–564 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  25. Loeffen, R.L.: On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes. Ann. Appl. Probab. 18, 1669–1680 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  26. Loeffen, R.L., Renaud, J.-F.: De Finetti’s optimal dividends problem with an affine penalty function at ruin. Insurance Math. Econom. 46, 98–108 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  27. Lundberg, F.: Approximerad Framställning Av Sannolikhetsfunktionen. Återförsäkring Av Kollektivrisker. Akad. Afhandling. Almqvist. och Wiksell, Uppsala (1903) Google Scholar
  28. Schmidli, H.: Stochastic Control in Insurance. Probability and Its Applications. Springer, London (2008) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Andreas E. Kyprianou
    • 1
  1. 1.Department of Mathematical SciencesUniversity of BathBathUnited Kingdom

Personalised recommendations