Skip to main content

Overview on Polymeric Drug Delivery Systems

  • Chapter
  • First Online:
Controlled Drug Delivery Systems

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSPOLIMI))

Abstract

Research in the area of controlled drug delivery systems has gaining increasing interests in the last decades due to the advantages in terms of safety, efficacy (being located in situ) and patient convenience avoiding risks due to surgery. In addition many new-discovered drugs made of peptides are very difficult to administer and drug delivery devices seem to overcome these problems. In general drug delivery devices exist in many forms and can be administered orally, through injection or implantation or transdermally. In this chapter we will focus our attention on the materials used for producing these devices, route of administration and finally on two of the most promising polymer-based drug carrier studied by many research groups all around the world: hydrogels and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa, Y., Owen, S. C., & Shoichet, M. S. (2012). Polymers used to influence cell fate in 3D geometry: New trends. Progress in Polymer Science, 37, 645–658.

    Article  Google Scholar 

  • Anderson, S. B., Lin, C. C., Kuntzler, D. V., & Anseth, K. S. (2011). The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials, 32, 3564–3574.

    Article  Google Scholar 

  • Arcos, D., Lopez-Noriega, A., Ruiz-Hernandez, E., Terasaki, O., & Vallet-Regi, M. (2009). Ordered mesoporous microspheres for bone grafting and drug delivery. Chemistry of Materials, 21, 1000–1009.

    Article  Google Scholar 

  • Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y. F., Kim, H., Lapitsky, Y., et al. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213.

    Article  Google Scholar 

  • Baumann, M. D., Kang, C. E., Tator, C. H., & Shoichet, M. S. (2010). Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials, 31, 7631–7639.

    Article  Google Scholar 

  • Chung, C. Y., Yang, J. T., & Kuo, Y. C. (2013). Polybutylcyanoacrylate nanoparticle-mediated neurotrophin-3 gene delivery for differentiating iPS cells into neurons. Biomaterials, 34, 5562–5570.

    Article  Google Scholar 

  • Doane, T. L., & Burda, C. (2012). The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society Reviews, 41, 2885–2911.

    Article  Google Scholar 

  • Ferrari, R., Yu, Y. C., Morbidelli, M., Hutchinson, R. A., & Moscatelli, D. (2011). Epsilon-Caprolactone-based macromonomers suitable for biodegradable nanoparticles synthesis through free radical polymerization. Macromolecules, 44, 9205–9212.

    Article  Google Scholar 

  • Flory, P. J. (1953). Principles of polymer chemistry. New York: Cornell Univeristy Press.

    Google Scholar 

  • Gauthier, M. A., Gibson, M. I., & Klok, H. A. (2009). Synthesis of functional polymers by post-polymerization modification. Angewandte Chemie. International Edition, 48, 48–58.

    Article  Google Scholar 

  • Hu, L. M., Sun, Y., & Wu, Y. (2013). Advances in chitosan-based drug delivery vehicles. Nanoscale, 5, 3103–3111.

    Article  Google Scholar 

  • Leung, M. K. M., Hagemeyer, C. E., Johnston, A. P. R., Gonzales, C., Kamphuis, M. M. J., Ardipradja, K., et al. (2012). Bio-click chemistry: enzymatic functionalization of PEGylated capsules for targeting applications. Angewandte Chemie. International Edition, 51, 7132–7136.

    Article  Google Scholar 

  • Li, H. R., Yu, Y., Dana, S. F., Li, B., Lee, C. Y., & Kang, L. F. (2013). Novel engineered systems for oral, mucosal and transdermal drug delivery. Journal of Drug Targeting, 21, 611–629.

    Article  Google Scholar 

  • Low, K. L., Tan, S. H., Zein, S. H. S., Roether, J. A., Mourino, V., & Boccaccini, A. R. (2010). Calcium phosphate-based composites as injectable bone substitute materials. Journal of Biomedical Materials Research Part B, 94B, 273–286.

    Google Scholar 

  • Matricardi, P., Di Meo, C., Coviello, T., & Alhaique, F. (2008). Recent advances and perspectives on coated alginate microspheres for modified drug delivery. Expert Opinion on Drug Delivery, 5, 417–425.

    Article  Google Scholar 

  • Mora, L., Chumbimuni-Torres, K. Y., Clawson, C., Hernandez, L., Zhang, L. F., & Wang, J. (2009). Real-time electrochemical monitoring of drug release from therapeutic nanoparticles. Journal of Controlled Release, 140, 69–73.

    Article  Google Scholar 

  • Mourino, V., & Boccaccini, A. R. (2010). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society, Interface, 7, 209–227.

    Article  Google Scholar 

  • Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., & Couvreur, P. (2013). Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 42, 1147–1235.

    Article  Google Scholar 

  • Ossipov, D. A., Yang, X., Varghese, O., Kootala, S., & Hilborn, J. (2010). Modular approach to functional hyaluronic acid hydrogels using orthogonal chemical reactions. Chemical Communications, 46, 8368–8370.

    Article  Google Scholar 

  • Papa, S., Rossi, F., Ferrari, R., Mariani, A., De Paola, M., Caron, I. et al. (2013). Selective nanovector mediated treatment of activated proinflammatory microglia/macrophage in spinal cord injury. ACS Nano.

    Google Scholar 

  • Peppas, N. A. (1987). Hydrogels in medicine and pharmacy. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Perale, G., Rossi, F., Santoro, M., Peviani, M., Papa, S., Llupi, D., et al. (2012). Multiple drug delivery hydrogel system for spinal cord injury repair strategies. Journal of Controlled Release, 159, 271–280.

    Article  Google Scholar 

  • Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., et al. (2011a). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345.

    Article  Google Scholar 

  • Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., et al. (2011b). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345.

    Article  Google Scholar 

  • Qiu, Y., & Park, K. (2012). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 64, 49–60.

    Article  Google Scholar 

  • Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36, 887–913.

    Article  Google Scholar 

  • Re, F., Gregori, M., & Masserini, M. (2012). Nanotechnology for neurodegenerative disorders. Maturitas, 73, 45–51.

    Article  Google Scholar 

  • Rossi, F., Perale, G., Papa, S., Forloni, G., & Veglianese, P. (2013). Current options for drug delivery to the spinal cord. Expert Opinion on Drug Delivery, 10, 385–396.

    Article  Google Scholar 

  • Saltzman, W. M. (2001). Drug delivery: Engineering principles for drug therapy. New York: Oxford University Press.

    Google Scholar 

  • Sehgal, P. K., & Srinivasan, A. (2009). Collagen-coated microparticles in drug delivery. Expert Opinion on Drug Delivery, 6, 687–695.

    Article  Google Scholar 

  • Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591.

    Article  Google Scholar 

  • Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161, 351–362.

    Article  Google Scholar 

  • Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329.

    Article  Google Scholar 

  • Tampieri, A., Celotti, G., Landi, E., Montevecchi, M., Roveri, N., Bigi, A., et al. (2003). Porous phosphate-gelatine composite as bone graft with drug delivery function. Journal of Materials Science. Materials in Medicine, 14, 623–627.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Rossi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rossi, F., Perale, G., Masi, M. (2016). Overview on Polymeric Drug Delivery Systems. In: Controlled Drug Delivery Systems. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-02288-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02288-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02287-1

  • Online ISBN: 978-3-319-02288-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics