A New Algorithm of Electronic Cleansing for Weak Faecal-Tagging CT Colonography

  • Le Lu
  • Bing Jian
  • Dijia Wu
  • Matthias Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)


CT Colonography (CTC) has emerged as a mainstream clinical practice of colonic cancer screening and diagnosis. One of the most critical problems is to increase compliance with CTC examinations via minimal bowel preparation (i.e., weak faecal-tagging), which nevertheless causes much lower signal-noise-ratio than conventional preparation.

In this paper, we present a new algorithm pipeline of electronically cleansing tagging materials in CTC under reduced oral contrast dose. Our method has the following steps: 1, robust structure parsing to generate a list of volume regions of interest (ROIs) of tagging material (avoiding bone erosion); 2, effectively locating local tagging-air (AT) transitional surface regions; 3, a novel discriminative-generative algorithm to learn the higher-order image appearance model in AT using 3D Markov Random Fields (MRF); 4, accurate probability density function based voxel labeling corresponding to semantic classes. Validated on 26 weak faecal-tagging CTC cases from 3 medical sites, our method yields better visualization clarity and readability compared with the previous approach [1]. The whole system computes efficiently (e.g., < 40 seconds for CT images of 512×512×1000 +).


Gaussian Mixture Model Compute Tomography Colonography Markov Random Fields Compute Tomography Intensity Algorithm Pipeline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, Z., Liang, Z., et al.: An Improved Electronic Colon Cleansing Method for Detection of Colonic Polyps by Virtual Colonoscopy. IEEE Trans. Biomed. Engi. 53, 1635–1646 (2006)CrossRefGoogle Scholar
  2. 2.
    Serlie, I., Vos, F., Truyen, R., Post, F., Stoker, J., van Vliet, L.: Electronic Cleansing for Computed Tomography (CT) Colonography Using a Scale-Invariant Three-Material Model. IEEE Trans. Biomed. Engi. 57, 1306–1317 (2010)CrossRefGoogle Scholar
  3. 3.
    Liedenbaum, M., Denters, M., Zijta, F., van Ravesteijn, V., Bipat, S., Vos, F., Dekker, E., Stoker, J.: Reducing the oral contrast dose in CT colonography: evaluation of faecal tagging quality and patient acceptance. Clin. Radiol., 30–37 (2010)Google Scholar
  4. 4.
    Lu, L., Wolf, M., Liang, J., Dundar, M., Bi, J., Salganicoff, M.: A Two-level Approach Towards Semantic Colon Segmentation: Removing Extra-colonic Findings. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 1009–1016. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Wu, T., Jian, B., Zhou, X.S.: Automated identification of thoracolumbar vertebrae using orthogonal matching pursuit. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 126–133. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pat. Anal. Mach. Intell. 28, 1465–1479 (2006)CrossRefGoogle Scholar
  7. 7.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pat. Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  8. 8.
    Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering. In: ICCV, pp. 1589–1596 (2005)Google Scholar
  9. 9.
    Cover, T.M., Thomas, J.A.: Elements of information theory (1991)Google Scholar
  10. 10.
    Konishi, S., Yuille, A., Coughlan, J., Zhu, S.: Statistical edge detection: Learning and evaluating edge cues. IEEE Trans. Pat. Anal. Mach. Intell. 25, 57–74 (2003)CrossRefGoogle Scholar
  11. 11.
    Lu, L., et al.: Hierarchical learning for tubular structure parsing in medical imaging: A study on coronary arteries using 3D CT Angiography. In: ICCV (2009)Google Scholar
  12. 12.
    Boykov, Y., Funka-Lea, G.: Graph Cuts and Efficient N-D Image Segmentation. Int. J. Comp. Vis. 70(2), 109–131 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Le Lu
    • 1
  • Bing Jian
    • 1
  • Dijia Wu
    • 1
  • Matthias Wolf
    • 1
  1. 1.Siemens Corporate ResearchSiemens Medical Solutions USAUSA

Personalised recommendations