Advertisement

Fully Automatic Detection of the Carotid Artery from Volumetric Ultrasound Images Using Anatomical Position-Dependent LBP Features

  • Fumi Kawai
  • Keisuke Hayata
  • Jun Ohmiya
  • Satoshi Kondo
  • Kiyoko Ishikawa
  • Masahiro Yamamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

We propose a fully automatic method for detecting the carotid artery from volumetric ultrasound images as a preprocessing stage for building three-dimensional images of the structure of the carotid artery. The proposed detector utilizes support vector machine classifiers to discriminate between carotid artery images and non-carotid artery images using two kinds of LBP-based features. The detector switches between these features depending on the anatomical position along the carotid artery. The detector narrows the search area for detection in consideration of the three-dimensional continuity of the carotid artery to suppress false positives and improve processing speed. We evaluate our proposed method using actual clinical cases. Accuracies of detection are 100 %, 87.5 % and 68.8 % for the common carotid artery, internal carotid artery, and external carotid artery sections, respectively. We also confirm that detection can be performed in real time using a personal computer.

Keywords

Ultrasound Carotid Artery Detection Support Vector Machine Local Binary Pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seabra, J.C.R., Pedro, L.M., Fernandes e Fernandes, J., Sanches, J.M.: A 3-D ultrasound-based framework to characterize the echo morphology of carotid plaques. IEEE Trans. Biomed. Eng. 56(5), 1442–1453 (2009)CrossRefGoogle Scholar
  2. 2.
    Hamou, A.K., Osman, S., El-Sakka, M.R.: Carotid ultrasound segmentation using DP active contours. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 961–971. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Barratt, D.C., Ariff, B.B., Humphries, K.N., Thom, S.A.Mc.G., Hughes, A.D.: Reconstruction and quantification of the carotid artery bifurcation from 3-D ultrasound images. IEEE Trans. Medical Imaging 23(5), 567–583 (2004)Google Scholar
  4. 4.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  5. 5.
    Golemati, S., Stoitsis, J., Sifakis, E.G., Balkizas, T., Nikita, K.S.: Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound in Medicine & Biology 33(12), 1918–1932 (2007)CrossRefGoogle Scholar
  6. 6.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Cao, Y., Pranata, S., Yasugi, M., Niu, Z., Nishimura, H.: Staggered multi-scale LBP for pedestrian detection. In: IEEE ICIP, pp. 449–452 (2012)Google Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR, vol. 1, pp. 886–893 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Fumi Kawai
    • 1
  • Keisuke Hayata
    • 1
  • Jun Ohmiya
    • 1
  • Satoshi Kondo
    • 1
  • Kiyoko Ishikawa
    • 2
  • Masahiro Yamamoto
    • 2
  1. 1.Panasonic Healthcare Co., Ltd.YokohamaJapan
  2. 2.Yokohama Stroke and Brain CenterYokohamaJapan

Personalised recommendations