Advertisement

Sparse Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction

  • Bo Cheng
  • Daoqiang Zhang
  • Biao Jie
  • Dinggang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

Effective prediction of conversion of mild cognitive impairment (MCI) to Alzheimer’s disease (AD) is important for early diagnosis of AD, as well as for evaluating AD risk pre-symptomatically. Different from most traditional methods for MCI conversion prediction, in this paper, we propose a novel sparse multimodal manifold-regularized transfer learning classification (SM2TLC) method, which can simultaneously use other related classification tasks (e.g., AD vs. normal controls (NC) classification) and also the unlabeled data for improving the MCI conversion prediction. Our proposed method includes two key components: (1) a criterion based on the maximum mean discrepancy (MMD) for eliminating the negative effect related to the distribution differences between the auxiliary (i.e., AD/NC) and the target (i.e., MCI converters/MCI non-converters) domains, and (2) a sparse semisupervised manifold-regularized least squares classification method for utilization of unlabeled data. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database show that the proposed method can significantly improve the classification performance between MCI converters and MCI non-converters, compared with the state-of-the-art methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cho, Y., Seong, J.K., Jeong, Y., Shin, S.Y.: Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage 59, 2217–2230 (2012)CrossRefGoogle Scholar
  2. 2.
    Zhang, D., Shen, D., Alzheimer’s Disease Neuroimaging Initiative: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59, 895-907 (2012)Google Scholar
  3. 3.
    Lehmann, M., Koedam, E.L., Barnes, J., Bartlett, J.W., Barkhof, F., Wattjes, M.P., Schott, J.M., Scheltens, P., Fox, N.C.: Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. Neurobiology of Aging 34, 73–82 (2012)CrossRefGoogle Scholar
  4. 4.
    Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q.: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging 32, 2322.e19–2322.e27 (2011)Google Scholar
  5. 5.
    Duchesne, S., Mouiha, A.: Morphological factor estimation via high-dimensional reduction: prediction of MCI conversion to probable AD. International Journal of Alzheimer’s Disease 2011, 914085 (2011)Google Scholar
  6. 6.
    Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56, 766–781 (2011)CrossRefGoogle Scholar
  7. 7.
    Filipovych, R., Davatzikos, C.: Semi-supervised pattern classification of medical images: Application to mild cognitive impairment (MCI). NeuroImage 55(3), 1109–1119 (2011)CrossRefGoogle Scholar
  8. 8.
    Cheng, B., Zhang, D., Shen, D.: Domain transfer learning for MCI conversion prediction. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 82–90. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Scholkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22, e49–e57 (2006)Google Scholar
  10. 10.
    Chen, X., Pan, W., Kwok, J.T., Carbonell, J.G.: Accelerated gradient method for multi-task sparse learning problem. In: Proceedings Ninth IEEE International Conference on Data Mining, ICDM 2009, pp. 746–751 (2009)Google Scholar
  11. 11.
    Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Nie, J., Yap, P.-T., Shi, F., Guo, L., Shen, D.: Robust Deformable-Surface-Based Skull-Stripping for Large-Scale Studies. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 635–642. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Shen, D., Davatzikos, C.: HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging 21, 1421–1439 (2002)CrossRefGoogle Scholar
  14. 14.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001)Google Scholar
  15. 15.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research 7, 2399–2434 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Duan, L., Xu, D., Tsang, I., Xu, D.: Domain Transfer Multiple Kernel Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(3), 465–479 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Bo Cheng
    • 1
    • 2
  • Daoqiang Zhang
    • 1
  • Biao Jie
    • 1
  • Dinggang Shen
    • 2
  1. 1.Dept. of Computer Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Dept. of Radiology and BRICUniversity of North Carolina at Chapel HillUSA

Personalised recommendations