Advertisement

Large-Scale Manifold Learning Using an Adaptive Sparse Neighbor Selection Approach for Brain Tumor Progression Prediction

  • Loc Tran
  • Frederic McKenzie
  • Jihong Wang
  • Jiang Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

Manifold learning performs dimensionality reduction by identifying low-dimensional structures (manifolds) embedded in a high-dim- ensional space. Many algorithms involve an eigenvector or singular value decomposition (SVD) procedure on a similarity matrix of size n ×n, where n denotes the number of data samples, making them not scalable to big data. A method to overcome large data set size is to create a manifold with a subset of the original data while embedding the rest into the manifold skeleton. An adequate number of neighbors varies and depends on the geometry of the manifold. Points that contain too few neighbors may not be able to encompass the intrinsic manifold geometry. Conversely, too many neighbors will cause a short circuit in the manifold. To overcome these problems, we introduce a novel adaptive neighbor selection approach using ℓ1 optimization. We show that this neighborhood selection can be useful in creating a more robust manifold in regards to MRI brain tumor data.

Keywords

Singular Value Decomposition Gaussian Mixture Model Brain Tumor Patient Abnormal Region Local Linear Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belabbas, M.-A., Wolfe, P.J.: On landmark selection and sampling in high-dimensional data analysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1906), 4295–4312 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Zhang, K., Kwok, J.T.: Clustered nystrom method for large scale manifold learning and dimension reduction. Trans. Neur. Netw. 21, 1576–1587 (2010)CrossRefGoogle Scholar
  3. 3.
    Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 2006, pp. 1117–1126. ACM, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Talwalkar, A., Kumar, S., Rowley, H.: Large-scale manifold learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)Google Scholar
  5. 5.
    Tran, L., et al.: A large-scale manifold learning approach for brain tumor progression prediction. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 265–272. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  7. 7.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  8. 8.
    Hartkens, T., Rueckert, D., Schnabel, J.A., Hawkes, D.J., Hill, D.L.G.: Vtk cisg registration toolkit: An open source software package for affine and nonrigid registration of single- and multimodal 3D images. In: Meiler, M., Saupe, D., Kruggel, F., Handels, H., Lehmann, T.M. (eds.) Bildverarbeitung fur die Medizin. CEUR Workshop Proceedings, vol. 56, pp. 409–412. Springer (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Loc Tran
    • 1
  • Frederic McKenzie
    • 2
  • Jihong Wang
    • 3
  • Jiang Li
    • 1
  1. 1.ECEOld Dominion UniversityNorfolkUSA
  2. 2.MSVEOld Dominion UniversityNorfolkUSA
  3. 3.Imaging PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations