Advertisement

A 2.5D Colon Wall Flattening Model for CT-Based Virtual Colonoscopy

  • Huafeng Wang
  • Lihong Li
  • Hao Han
  • Rui Shi
  • Bowen Song
  • Hao Peng
  • Yan Liu
  • Xianfeng Gu
  • Yunhong Wang
  • Zhengrong Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

Conformal mapping for Computed Tomography Colonography(CTC) provides a two-dimensional (2D) representations for the original three-dimensional (3D) colon wall. Based on the flattening results of the colon, efforts have been devoted toward its applications for some medical uses, such as colon registration, Taniae Coli (TC) detection and Haustral folds segmentation, and so on. Though, the previously-used conformal mapping-based flattening methods can preserve the angle or area on the wall, the 2D flattening result still limits itself to provide more accurate information contained on the original colon wall due to its’ lack of the undulating topography. In view of this limitation of the 2D flattening model, a novelty 2.5D approach was proposed in this paper. The new approach was tested for two of the many applications, i.e., the detections of Haustral folds and TCs. Experimental results revealed its validity in these applications.

Keywords

Conformal mapping 2.5D representation colon wall medical imaging Computed Tomography Colonography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Cancer Society: Cancer Facts & Figures 2012. American Cancer Society, Atlanta (2012)Google Scholar
  2. 2.
    Eddy, D.: Screening for colorectal cancer. Annals of Internal Medicine 113, 373–384 (1990)CrossRefGoogle Scholar
  3. 3.
    Zeng, W., Marino, J., Gu, X., Kaufman, A.: Conformal geometry based supine and prone colon registration. In: Yoshida, H., Cai, W. (eds.) Virtual Colonoscopy and Abdominal Imaging 2010. LNCS, vol. 6668, pp. 113–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Haker, S., Angenent, S., Kikinis, R.: Nondistorting flattening maps and the 3D visualization of colon CT images. IEEE Transactions on Medical Imaging 19, 665–670 (2000)CrossRefGoogle Scholar
  5. 5.
    Liang, Z., Yang, F., Wax, M., Li, J., You, J., Kaufman, A., Hong, L., Li, H., Viswambharan, A.: Inclusion of a priori information in segmentation of colon lumen for 3D virtual colonoscopy. In: Conference Record of IEEE Nuclear Science Symposium-Medical Imaging Conference, Albuquerque, NM (1997)Google Scholar
  6. 6.
    Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd edn. Cambridge University Press (1999)Google Scholar
  7. 7.
    Wan, M., Liang, Z., Ke, Q., Hong, L., Bitter, I., Kaufman, A.: Automatic centerline extraction for virtual colonoscopy. IEEE Transactions on Medical Imaging 21, 1450–1460 (2002)CrossRefGoogle Scholar
  8. 8.
    Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and application to virtual endoscopy. Medical Image Analysis (4), 281–299 (2001)Google Scholar
  9. 9.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceedings of the Natural Academy of Sciences 93, 1591–1595 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Antiga, L.: Patient-specific modeling of geometry and blood flow in large arteries. PhD thesis, Politecnico di Milano (2003)Google Scholar
  11. 11.
    Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.: Conformal virtual colon flattening. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, pp. 85–93 (2006)Google Scholar
  12. 12.
    Huang, A., Roy, D.A., Summers, R.M., Franaszek, M., Petrick, N., Choi, J.R., Pickhardt, P.J.: Teniae coli-based circumfe-rential localization system for CT colonography: Feasability study. Radiology 243(2), 551–560 (2007)CrossRefGoogle Scholar
  13. 13.
    Lamy, J., Summers, R.M.: Teniæ coli detection from colon surface: Extraction of anatomical markers for virtual colonoscopy. In: Bebis, G., et al. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 199–207. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Wei, Z., Yao, J., Wang, S., Summers, R.M.: Teniae coli extraction in human colon for computed tomographic colonography images. In: Yoshida, H., Cai, W. (eds.) Virtual Colonoscopy and Abdominal Imaging 2010. LNCS, vol. 6668, pp. 98–104. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Zhu, H., Barish, M., Pickhardt, P., Liang, Z.: Haustral fold segmentation with curvature-guided level set evolution. IEEE Trans. Biomed. Engineering 60(2), 321–331 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Huafeng Wang
    • 1
    • 2
  • Lihong Li
    • 3
  • Hao Han
    • 1
  • Rui Shi
    • 4
  • Bowen Song
    • 1
  • Hao Peng
    • 4
  • Yan Liu
    • 1
  • Xianfeng Gu
    • 4
  • Yunhong Wang
    • 5
  • Zhengrong Liang
    • 1
  1. 1.Dept. of RadiologyStony Brook UniversityStony BrookUSA
  2. 2.School of SoftwareBeihang University of BeijingChina
  3. 3.Department of Engineering Science & PhysicsCity University of New York, College of Staten IslandStaten IslandUSA
  4. 4.Dept. of Computer ScienceStony Brook UniversityStony BrookUSA
  5. 5.School of Computer ScienceBeihang University of BeijingChina

Personalised recommendations