Advertisement

HEp-2 Cell Image Classification: A Comparative Analysis

  • Praful Agrawal
  • Mayank Vatsa
  • Richa Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

HEp-2 cell image classification is an important and relatively unexplored area of research. This paper presents an experimental analysis of five different categories of feature sets with four different classifiers to determine the best performing combination of features and classifiers. The analysis is performed on the ICIP 2013 Cell Image Classification Contest Training dataset comprising over 13,000 cell images pertaining to six cell classes. The results computed with 10 fold cross validation show that texture features perform the best among all the explored feature sets and the combination of Laws features with SVM yields the highest accuracy.

Keywords

Cell Image Fold Cross Validation Feature Category Cell Pattern Cell Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wiik, A.S., Høier-Madsen, M., Forslid, J., Charles, P., Meyrowitsch, J.: Antinuclear antibodies: a contemporary nomenclature using HEp-2 cells. Journal of Autoimmunity 35(3), 276–290 (2010)CrossRefGoogle Scholar
  2. 2.
    NCCLS: Center for disease control - quality assurance for the indirect immunofluorescence test for autoantibodies to nuclear antigen (IF-ANA): Approved guideline. LA2-A 16(11) (1996)Google Scholar
  3. 3.
    Wiliem, A., Wong, Y., Sanderson, C., Hobson, P., Chen, S., Lovell, B.: Classification of human epithelial type 2 cell indirect immunofluoresence images via codebook based descriptors. In: WACV, pp. 95–102 (2013)Google Scholar
  4. 4.
    Ersoy, I., Bunyak, F., Peng, J., Palaniappan, K.: HEp-2 cell classification in IIF images using shareboost. In: ICPR, pp. 3362–3365 (2012)Google Scholar
  5. 5.
    Ghosh, S., Chaudhary, V.: Feature analysis for automatic classification of HEp-2 florescence patterns: Computer-aided diagnosis of auto-immune diseases. In: ICPR, pp. 174–177 (2012)Google Scholar
  6. 6.
    Li, K., Yin, J., Lu, Z., Kong, X., Zhang, R., Liu, W.: Multiclass boosting SVM using different texture features in HEp-2 cell staining pattern classification. In: ICPR, pp. 170–173 (2012)Google Scholar
  7. 7.
    Iannello, G., Onofri, L., Soda, P.: A bag of visual words approach for centromere and cytoplasmic staining pattern classification on HEp-2 images. In: CBMS, pp. 1–6 (2012)Google Scholar
  8. 8.
    Ali, W., Piro, P., Giampaglia, D., Pourcher, T., Barlaud, M.: Biological cells classification using bio-inspired descriptor in a boosting k-NN framework. In: CBMS, pp. 1–6 (2012)Google Scholar
  9. 9.
    Theodorakopoulos, I., Kastaniotis, D., Economou, G., Fotopoulos, S.: HEp-2 cells classification via fusion of morphological and textural features. In: BIBE, pp. 689–694 (2012)Google Scholar
  10. 10.
    Cordelli, E., Soda, P.: Color to grayscale staining pattern representation in IIF. In: CBMS, pp. 1–6 (2011)Google Scholar
  11. 11.
    Foggia, P., Percannella, G., Soda, P., Vento, M.: Early experiences in mitotic cells recognition on HEp-2 slides. In: CBMS, pp. 38–43 (2010)Google Scholar
  12. 12.
    Soda, P., Iannello, G.: Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis. IEEE TITB 13(3), 322–329 (2009)MathSciNetGoogle Scholar
  13. 13.
    Hobson, P., Percannella, G., Vento, M., Wiliem, A.: Competition on cells classification by fluorescent image analysis. In: ICIP (2013), http://nerone.diiie.unisa.it/contest-icip-2013/index.shtml
  14. 14.
    Boucheron, L.E.: Object- and Spatial-Level Quantitative Analysis of Multispectral Histopathology Images for Detection and Characterization of Cancer. PhD thesis, UCSB (2008)Google Scholar
  15. 15.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE T-SMC (6), 610–621 (1973)Google Scholar
  16. 16.
    Tang, X.: Texture information in run-length matrices. IEEE TIP 7(11), 1602–1609 (1998)Google Scholar
  17. 17.
    Laws, K.I.: Textured image segmentation. Technical report, USC (1980)Google Scholar
  18. 18.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM T-IST 2(3), 1–27 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Praful Agrawal
    • 1
  • Mayank Vatsa
    • 1
  • Richa Singh
    • 1
  1. 1.Indraprastha Institute of Information TechnologyDelhiIndia

Personalised recommendations