Temporally Dynamic Resting-State Functional Connectivity Networks for Early MCI Identification

  • Chong-Yaw Wee
  • Sen Yang
  • Pew-Thian Yap
  • Dinggang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)


Resting-state functional Magnetic Resonance Imaging (R-fMRI) scan provides a rich characterization of the dynamic changes or temporal variabilities caused by neural interactions that may happen within the scan duration. Multiple functional connectivity networks can be estimated from R-fMRI time series to effectively capture subtle yet short neural connectivity changes induced by disease pathologies. To effectively extract the temporally dynamic information, we utilize a sliding window approach to generate multiple shorter, yet overlapping sub-series from a full R-fMRI time series. Whole-brain sliding window correlations are computed based on these sub-series to generate a series of temporal networks, characterize the neural interactions between brain regions at different time scales. Individual estimation of these temporal networks overlooks the intrinsic temporal smoothness between successive overlapping R-fMRI sub-series. To handle this problem, we suggest to jointly estimate temporal networks by maximizing a penalized log likelihood via a fused lasso regularization: 1) l 1-norm penalty ensures a sparse solution; 2) fused regularization preserves the temporal smoothness while allows correlation variability. The estimated temporal networks were applied for early Mild Cognitive Impairment (eMCI) identification, and our results demonstrate the importance of including temporally dynamic R-fMRI scan information for accurate diagnosis of eMCI.


Functional Connectivity Normal Control Group Temporal Network Slide Window Approach Neural Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.T.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)CrossRefGoogle Scholar
  2. 2.
    Chang, C., Glover, G.H.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1), 81–98 (2010)CrossRefGoogle Scholar
  3. 3.
    Danaher, P., Wang, P., Witten, D.M.: The joint graphical lasso for inverse covariance estimation across multiple classes. Arxiv preprint arXiv:1111.0324 (2012)Google Scholar
  4. 4.
    Fennema-Notestine, C., Hagler Jr., D.J., McEvoy, L.K., Fleisher, A.S., Wu, E.H., Karow, D.S., Dale, A.M., Alzheimer’s Disease Neuroimaging Initiative: Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum. Brain Mapp. 30(10), 3238–3253 (2009)Google Scholar
  5. 5.
    Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V.: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. U. S. A. 101(13), 4637–4642 (2004)CrossRefGoogle Scholar
  7. 7.
    Handwerker, D.A., Roopchansingh, V., Gonzalez-Castillo, J., Bandettini, P.A.: Periodic changes in fMRI connectivity. Neuroimage 63(3), 1712–1719 (2012)CrossRefGoogle Scholar
  8. 8.
    Sheline, Y.I., Raichle, M.E.: Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry (in press, 2013)Google Scholar
  9. 9.
    Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W., Beckmann, C.F., Jenkinson, M., Andersson, J., Glasser, M.F., Van Essen, D.C., Feinberg, D.A., Yacoub, E.S., Ugurbil, K.: Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. U. S. A. 109(8), 3131 (2012)CrossRefGoogle Scholar
  10. 10.
    Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for fMRI. Neuroimage 54(2), 875–891 (2011)CrossRefGoogle Scholar
  11. 11.
    Sporns, O.: The human connectome: A complex network. Ann. N. Y. Acad. Sci. 1224, 109–125 (2011)CrossRefGoogle Scholar
  12. 12.
    Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4, e1000100 (2008)Google Scholar
  13. 13.
    Tibshirani, R., Sauders, M., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Statist. Soc. B 67(1), 91–108 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., Jack Jr., C.R.: 3D maps from multiple mri illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130(7), 1777–1786 (2007)CrossRefGoogle Scholar
  15. 15.
    Yang, S., Pan, Z., Shen, X., Wonka, P., Ye, J.: Fused multiple graphical lasso. Arxiv preprint arXiv:1209.2139 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Chong-Yaw Wee
    • 1
  • Sen Yang
    • 2
  • Pew-Thian Yap
    • 1
  • Dinggang Shen
    • 1
  1. 1.Department of Radiology and BRICUniversity of North Carolina at Chapel HillUSA
  2. 2.Department of Computer Science and EngineeringArizona State UniversityTempeUSA

Personalised recommendations