Advertisement

Metric Space Structures for Computational Anatomy

  • Jianqiao Feng
  • Xiaoying Tang
  • Minh Tang
  • Carey Priebe
  • Michael Miller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

This paper describes a method based on metric structures for anatomical analysis on a large set of brain MR images. A geodesic distance between each pair was measured using large deformation diffeomorphic metric mapping (LDDMM). Manifold learning approaches were applied to seek a low-dimensional embedding in the high- dimensional shape space, in which inference between healthy control and disease groups can be done using standard classification algorithms. In particular, the proposed method was evaluated on ADNI, a dataset for Alzheimer’s disease study. Our work demonstrates that the high-dimensional anatomical shape space of the amygdala and hippocampi can be approximated by a relatively low dimension manifold.

Keywords

structural MR image computational anatomy Alzheimer’s disease manifold learning shape analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grenander, U., Miller, M.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics 56(4), 617–694 (1998)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)CrossRefGoogle Scholar
  3. 3.
    Mueller, S., Weiner, M., Thal, L., Petersen, R., Jack, C., Jagust, W., Trojanowski, J., Toga, A., Beckett, L.: The Alzheimers disease neuroimaging initiative. Neuroimaging Clinics of North America 15(4), 869 (2005)CrossRefGoogle Scholar
  4. 4.
    Park, H.: Isomap induced manifold embedding and its application to Alzheimer’s disease and mild cognitive impairment. Neuroscience Letters (2012)Google Scholar
  5. 5.
    Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D.: Random forest-based manifold learning for classification of imaging data in dementia. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 159–166. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Gray, K., Aljabar, P., Heckemann, R., Hammers, A., Rueckert, D.: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage (2012)Google Scholar
  7. 7.
    Wolz, R., Aljabar, P., Hajnal, J., Lötjönen, J., Rueckert, D.: Nonlinear dimensionality reduction combining mr imaging with non-imaging information. Medical Image Analysis (2011)Google Scholar
  8. 8.
    Yang, X., Goh, A., Qiu, A.: Approximations of the diffeomorphic metric and their applications in shape learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 257–270. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Gerber, S., Tasdizen, T., Fletcher, P., Joshi, S., Whitaker, R.: Manifold modeling for brain population analysis. Medical Image Analysis 14(5), 643 (2010)CrossRefGoogle Scholar
  10. 10.
    Miller, M., Priebe, C., Qiu, A., Fischl, B., Kolasny, A., Brown, T., Park, Y., Ratnanather, J., Busa, E., Jovicich, J., et al.: Collaborative computational anatomy: an mri morphometry study of the human brain via diffeomorphic metric mapping. Human Brain Mapping 30(7), 2132–2141 (2008)CrossRefGoogle Scholar
  11. 11.
    Qiu, A., Miller, M.I., et al.: Multi-structure network shape analysis via normal surface momentum maps. NeuroImage 42(4), 1430 (2008)CrossRefGoogle Scholar
  12. 12.
    Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)CrossRefGoogle Scholar
  13. 13.
    Khan, A.R., Wang, L., Beg, M.F.: Freesurfer-initiated fully-automated subcortical brain segmentation in mri using large deformation diffeomorphic metric mapping. NeuroImage 41(3), 735 (2008)CrossRefGoogle Scholar
  14. 14.
    Vaillant, M., Qiu, A., Glaunès, J., Miller, M.: Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus. NeuroImage 34(3), 1149–1159 (2007)CrossRefGoogle Scholar
  15. 15.
    Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Trosset, M.W., Priebe, C.E., Park, Y., Miller, M.I.: Semisupervised learning from dissimilarity data. Computational Statistics & Data Analysis 52(10), 4643–4657 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tenenbaum, J., De Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  18. 18.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14, pp. 585–591 (2001)Google Scholar
  19. 19.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  20. 20.
    Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)Google Scholar
  21. 21.
    Miller, M., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision 24(2), 209–228 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vaillant, M., Miller, M.I., Younes, L., Trouvé, A., et al.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23(1), 161 (2004)CrossRefGoogle Scholar
  23. 23.
    Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G., Miller, M.I.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Transactions on Medical Imaging 26(4), 462–470 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jianqiao Feng
    • 1
    • 2
  • Xiaoying Tang
    • 1
    • 2
  • Minh Tang
    • 1
    • 3
  • Carey Priebe
    • 1
    • 3
  • Michael Miller
    • 1
    • 4
  1. 1.Center of Imaging ScienceThe Johns Hopkins UniversityUnited States
  2. 2.Department of Electrical and Computer EngineeringThe Johns Hopkins UniversityUnited States
  3. 3.Department of Applied Mathematics and StatisticsThe Johns Hopkins UniversityUnited States
  4. 4.Department of Biomedical EngineeringThe Johns Hopkins UniversityUnited States

Personalised recommendations