Patch-Based Segmentation without Registration: Application to Knee MRI

  • Zehan Wang
  • Claire Donoghue
  • Daniel Rueckert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)


Atlas based segmentation techniques have been proven to be effective in many automatic segmentation applications. However, the reliance on image correspondence means that the segmentation results can be affected by any registration errors which occur, particularly if there is a high degree of anatomical variability. This paper presents a novel multi-resolution patch-based segmentation framework which is able to work on images without requiring registration. Additionally, an image similarity metric using 3D histograms of oriented gradients is proposed to enable atlas selection in this context. We applied the proposed approach to segment MR images of the knee from the MICCAI SKI10 Grand Challenge, where 100 training atlases are provided and evaluation is conducted on 50 unseen test images. The proposed method achieved good scores overall and is comparable to the top entries in the challenge for cartilage segmentation, demonstrating good performance when comparing against state-of-the-art approaches customised to Knee MRI.


Patch Size Spatial Context Initial Segmentation Coarse Segmentation Label Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akgül, C.B., Rubin, D.L., Napel, S., Beaulieu, C.F., Greenspan, H., Acar, B.: Content-Based Image Retrieval in Radiology: Current Status and Future Directions. Journal of Digital Imaging 24(2), 208–222 (2011)CrossRefGoogle Scholar
  2. 2.
    Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)CrossRefGoogle Scholar
  3. 3.
    Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid Methods in Image Processing (1984)Google Scholar
  4. 4.
    Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  5. 5.
    Donoghue, C.R., Rao, A., Pizarro, L., Bull, A.M.J., Rueckert, D.: Fast and accurate global geodesic registrations using knee MRI from the Osteoarthritis Initiative. In: CVPRW, pp. 50–57 (June 2012)Google Scholar
  6. 6.
    Eskildsen, S.F., Coupé, P., Fonov, V., Manjón, J.V., Leung, K.K., Guizard, N., Wassef, S.N., Østergaard, L.R., Collins, D.L.: BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage 59(3), 2362–2373 (2012)CrossRefGoogle Scholar
  7. 7.
    Fripp, J., Crozier, S., Warfield, S.K., Ourselin, S.: Automatic Segmentation and Quantitative Analysis of the Articular Cartilages from Magnetic Resonance Images of the Knee. IEEE Transactions on Medical Imaging 29(1), 55–64 (2010)CrossRefGoogle Scholar
  8. 8.
    Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)CrossRefGoogle Scholar
  9. 9.
    Heimann, T., Morrison, B.: Segmentation of knee images: A grand challenge. In: MICCAI Workshop on Medical Image Analysis for the Clinic, pp. 207–214 (2010)Google Scholar
  10. 10.
    Klaeser, A., Marszalek, M., Schmid, C.: A Spatio-Temporal Descriptor Based on 3D-Gradients. In: Procedings of BMVC, pp. 99.1–99.10 (2008)Google Scholar
  11. 11.
    Maurer, C.R., Rensheng, Q., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 265–270 (2003)CrossRefGoogle Scholar
  12. 12.
    Nyúl, L.G., Udupa, J.K.: On standardizing the MR image intensity scale. Magnetic Resonance in Medicine 42(6), 1072–1081 (1999)CrossRefGoogle Scholar
  13. 13.
    Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)CrossRefGoogle Scholar
  14. 14.
    Rousseau, F., Habas, P., Studholme, C.: A Supervised Patch-Based Approach for Human Brain Labeling. IEEE Transactions on Medical Imaging 30(10), 1852–1862 (2011)CrossRefGoogle Scholar
  15. 15.
    Thomson, J.: On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure. Philosophical Magazine 7(39), 237–265 (1904)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Torralba, A., Fergus, R., Freeman, W.T.: 80 Million Tiny Images: a Large Data Set for Nonparametric Object and Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 1958–1970 (2008)CrossRefGoogle Scholar
  17. 17.
    Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Wolz, R., Tong, T., Rueckert, D.: Spatially Aware Patch-based Segmentation (SAPS): An Alternative Patch-Based Segmentation Framework. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 93–103. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Wolz, R., Chu, C., Misawa, K., Mori, K., Rueckert, D.: Multi-organ Abdominal CT Segmentation Using Hierarchically Weighted Subject-Specific Atlases. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 10–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Zehan Wang
    • 1
  • Claire Donoghue
    • 1
  • Daniel Rueckert
    • 1
  1. 1.Department of ComputingImperial College LondonUK

Personalised recommendations