Skip to main content

fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8184))

Included in the following conference series:

Abstract

fMRI analysis has most often been approached with linear methods. However, this disregards information encoded in the relationships between voxels. We propose to exploit the inherent spatial structure of the brain to improve the prediction performance of fMRI analysis. We do so in an exploratory fashion by representing the fMRI data by graphs. We use the Weisfeiler-Lehman algorithm to efficiently compute subtree features of the graphs. These features encode non-linear interactions between voxels, which contain additional discriminative information that cannot be captured by a linear classifier. In order to make use of the efficiency of the Weisfeiler-Lehman algorithm, we introduce a novel pyramid quantization strategy to approximate continuously labeled graphs with a sequence of discretely labeled graphs. To control the capacity of the resulting prediction function, we utilize the elastic net sparsity regularizer. We validate our method on a cocaine addiction dataset showing a significant improvement over elastic net and kernel ridge regression baselines and a reduction in classification error of over 14%. Source code is also available at https://gitorious.org/wlpyramid .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demirci, O., Clark, V., Calhoun, V.: A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia. Neuroimage 39 (2008)

    Google Scholar 

  2. Wang, X., Hutchinson, R., Mitchell, T.M.: Training fMRI classifiers to discriminate cognitive states across multiple subjects. In: NIPS (2003)

    Google Scholar 

  3. Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Machine Learning 57, 145–175 (2004)

    Article  MATH  Google Scholar 

  4. Tahmasebi, A.M., Artiges, E., Banaschewski, T., Barker, G.J., Bruehl, R., Bchel, C., Conrod, P.J., Flor, H., Garavan, H., Gallinat, J., Heinz, A., Ittermann, B., Loth, E., Mareckova, K., Martinot, J.L., Poline, J.B., Rietschel, M., Smolka, M.N., et al.: Creating probabilistic maps of the face network in the adolescent brain: A multicentre functional mri study. Human Brain Mapping 33, 938–957 (2012)

    Article  Google Scholar 

  5. Honorio, J., Tomasi, D., Goldstein, R., Leung, H., Samaras, D.: Can a single brain region predict a disorder? IEEE Transactions on Medical Imaging (2012)

    Google Scholar 

  6. Carroll, M., Cecchi, G., Rish, I., Garg, R., Rao, A.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44, 112–122 (2009)

    Article  Google Scholar 

  7. Gkirtzou, K., Honorio, J., Samaras, D., Goldstein, R., Blaschko, M.B.: fMRI analysis of cocaine addiction using k-support sparsity. In: ISBI (2013)

    Google Scholar 

  8. Venkataraman, A., Kubicki, M., Golland, P.: From brain connectivity models to identifying foci of a neurological disorder. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 715–722. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T.: Disrupted small-world networks in schizophrenia. Brain 131 (2008)

    Google Scholar 

  10. Mokhtari, F., Hossein-Zadeh, G.A.: Decoding brain states using backward edge elimination and graph kernels in fMRI connectivity networks. Journal of Neuroscience Methods 212, 259–268 (2013)

    Article  Google Scholar 

  11. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. JMLR 12, 2539–2561 (2011)

    Google Scholar 

  13. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features. J. Mach. Learn. Res. 8, 725–760 (2007)

    MATH  Google Scholar 

  14. Goldstein, R., Alia-Klein, N., Tomasi, D., Carrillo, J., Maloney, T., Woicik, P., Wang, R., Telang, F., Volkow, N.: Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. PNAS 106, 9453 (2009)

    Article  Google Scholar 

  15. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R.I., Borgwardt, K.M.: Graph kernels. JMLR 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Sporns, O.: Networks of the Brain. MIT Press (2010)

    Google Scholar 

  17. Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage 54, 1812–1822 (2011)

    Article  Google Scholar 

  18. Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Tech. Informatsia, Ser. 2(9) (1968)

    Google Scholar 

  19. Goldstein, R.Z., Woicik, P.A., Maloney, T., Tomasi, D., Alia-Klein, N., Shan, J., Honorio, J., Samaras, D., Wang, R., Telang, F., Wang, G.J., Volkow, N.D.: Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. PNAS 107, 16667–16672 (2010)

    Article  Google Scholar 

  20. Culbertson, C., Bramen, J., Cohen, M., London, E.D., Olmstead, R.E., Gan, J.J., Costello, M.R., Shulenberger, S., Mandelkern, M.A., Brody, A.L.: Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers. Archives of General Psychiatry 68, 505–515 (2011)

    Article  Google Scholar 

  21. Franklin, T.R., Wang, Z., Li, Y., Suh, J.J., Goldman, M., Lohoff, F.W., Cruz, J., Hazan, R., Jens, W., Detre, J.A., Berrettini, W., O’Brien, C.P., Childress, A.R.: Dopamine transporter genotype modulation of neural responses to smoking cues: confirmation in a new cohort. Addiction Biology 16, 308–322 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Gkirtzou, K., Honorio, J., Samaras, D., Goldstein, R., Blaschko, M.B. (2013). fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02267-3_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02266-6

  • Online ISBN: 978-3-319-02267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics