Skip to main content

A Bayesian Algorithm for Image-Based Time-to-Event Prediction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8184))

Abstract

This paper presents a novel Bayesian algorithm for making image-based predictions of the timing of a clinical event, such as the diagnosis of disease or death. We build on the Relevance Voxel Machine (RVoxM) framework, a Bayesian multivariate prediction model that exploits the spatial smoothness in images and has been demonstrated to offer excellent predictive accuracy for clinical variables. We utilize the classical survival analysis approach to model the dynamic risk of the event of interest, while accounting for the limited follow-up-time, i.e. censoring of the training data. We instantiate the proposed algorithm (RVoxM-S) to analyze cortical thickness maps derived from structural brain Magnetic Resonance Imaging (MRI) data. We train RVoxM-S to make predictions about the timing of the conversion from Mild Cognitive Impairment (MCI) status to clinical dementia of the Alzheimer type (or AD). Our experiments demonstrate that RVoxM-S is significantly better at identifying subjects at high risk of conversion to AD over the next two years, compared to a binary classification algorithm trained to discriminate converters versus non-converters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K.M., Odell, P.M., Wilson, P.W.F., Kannel, W.B.: Cardiovascular disease risk profiles. American Heart Journal 121(1), 293–298 (1991)

    Article  Google Scholar 

  2. Wang, T.J., et al.: Multiple biomarkers for the prediction of first major cardiovascular events and death. New England Journal of Medicine 355(25) (2006)

    Google Scholar 

  3. Kamath, P.S., et al.: A model to predict survival in patients with end-stage liver disease. Hepatology 33(2) (2001)

    Google Scholar 

  4. Collett, D.: Modelling survival data in medical research, vol. 57. CRC Press (2003)

    Google Scholar 

  5. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6), 805–821 (2000)

    Article  Google Scholar 

  6. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97(20), 11050 (2000)

    Article  Google Scholar 

  7. Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2), 261–270 (2003)

    Article  Google Scholar 

  8. Davatzikos, C., et al.: Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiology of Aging 29(4) (2008)

    Google Scholar 

  9. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39(4), 1731–1743 (2008)

    Article  Google Scholar 

  10. Klöppel, S., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3) (2008)

    Google Scholar 

  11. Pohl, K.M., Sabuncu, M.R.: A unified framework for MR based disease classification. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 300–313. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Sabuncu, M., Van Leemput, K.: The relevance voxel machine (rvoxm): A self-tuning bayesian model for informative image-based prediction. IEEE TMI 31(12) (2012)

    Google Scholar 

  13. Cuingnet, R., et al.: Spatial prior in SVM-based classification of brain images. In: Proceedings of SPIE, vol. 7624, p. 76241L (2010)

    Google Scholar 

  14. Cox, D.R., Oakes, D.: Analysis of survival data, vol. 21. Chapman & Hall/CRC (1984)

    Google Scholar 

  15. Desikan, R.S., et al.: Temporoparietal mr imaging measures of atrophy in subjects with mild cognitive impairment that predict subsequent diagnosis of Alzheimer disease. American Journal of Neuroradiology 30(3) (2009)

    Google Scholar 

  16. Vemuri, P., et al.: Time-to-event voxel-based techniques to assess regional atrophy associated with mci risk of progression to ad. Neuroimage 54(2) (2011)

    Google Scholar 

  17. Tibshirani, R., et al.: The lasso method for variable selection in the cox model. Statistics in Medicine 16(4), 385–395 (1997)

    Article  Google Scholar 

  18. Gui, J., Li, H.: Penalized cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21(13), 3001–3008 (2005)

    Article  Google Scholar 

  19. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis I: Segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Article  Google Scholar 

  20. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)

    Article  Google Scholar 

  21. Fischl, B., Sereno, M.I., Tootell, R.B.H., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8(4), 272–284 (1999)

    Article  Google Scholar 

  22. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions, vol. 1 (1994)

    Google Scholar 

  23. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Cuingnet, R., et al.: Automatic classification of patients with Alzheimer’s disease from structural mri: A comparison of ten methods using the adni database. Neuroimage 56(2) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Sabuncu, M.R. (2013). A Bayesian Algorithm for Image-Based Time-to-Event Prediction. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02267-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02266-6

  • Online ISBN: 978-3-319-02267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics