A Bayesian Algorithm for Image-Based Time-to-Event Prediction

  • Mert R. Sabuncu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)


This paper presents a novel Bayesian algorithm for making image-based predictions of the timing of a clinical event, such as the diagnosis of disease or death. We build on the Relevance Voxel Machine (RVoxM) framework, a Bayesian multivariate prediction model that exploits the spatial smoothness in images and has been demonstrated to offer excellent predictive accuracy for clinical variables. We utilize the classical survival analysis approach to model the dynamic risk of the event of interest, while accounting for the limited follow-up-time, i.e. censoring of the training data. We instantiate the proposed algorithm (RVoxM-S) to analyze cortical thickness maps derived from structural brain Magnetic Resonance Imaging (MRI) data. We train RVoxM-S to make predictions about the timing of the conversion from Mild Cognitive Impairment (MCI) status to clinical dementia of the Alzheimer type (or AD). Our experiments demonstrate that RVoxM-S is significantly better at identifying subjects at high risk of conversion to AD over the next two years, compared to a binary classification algorithm trained to discriminate converters versus non-converters.


Multivariate Pattern Analysis Survival Models Time-to-event prediction MRI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, K.M., Odell, P.M., Wilson, P.W.F., Kannel, W.B.: Cardiovascular disease risk profiles. American Heart Journal 121(1), 293–298 (1991)CrossRefGoogle Scholar
  2. 2.
    Wang, T.J., et al.: Multiple biomarkers for the prediction of first major cardiovascular events and death. New England Journal of Medicine 355(25) (2006)Google Scholar
  3. 3.
    Kamath, P.S., et al.: A model to predict survival in patients with end-stage liver disease. Hepatology 33(2) (2001)Google Scholar
  4. 4.
    Collett, D.: Modelling survival data in medical research, vol. 57. CRC Press (2003)Google Scholar
  5. 5.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6), 805–821 (2000)CrossRefGoogle Scholar
  6. 6.
    Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97(20), 11050 (2000)CrossRefGoogle Scholar
  7. 7.
    Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2), 261–270 (2003)CrossRefGoogle Scholar
  8. 8.
    Davatzikos, C., et al.: Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiology of Aging 29(4) (2008)Google Scholar
  9. 9.
    Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39(4), 1731–1743 (2008)CrossRefGoogle Scholar
  10. 10.
    Klöppel, S., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3) (2008)Google Scholar
  11. 11.
    Pohl, K.M., Sabuncu, M.R.: A unified framework for MR based disease classification. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 300–313. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Sabuncu, M., Van Leemput, K.: The relevance voxel machine (rvoxm): A self-tuning bayesian model for informative image-based prediction. IEEE TMI 31(12) (2012)Google Scholar
  13. 13.
    Cuingnet, R., et al.: Spatial prior in SVM-based classification of brain images. In: Proceedings of SPIE, vol. 7624, p. 76241L (2010)Google Scholar
  14. 14.
    Cox, D.R., Oakes, D.: Analysis of survival data, vol. 21. Chapman & Hall/CRC (1984)Google Scholar
  15. 15.
    Desikan, R.S., et al.: Temporoparietal mr imaging measures of atrophy in subjects with mild cognitive impairment that predict subsequent diagnosis of Alzheimer disease. American Journal of Neuroradiology 30(3) (2009)Google Scholar
  16. 16.
    Vemuri, P., et al.: Time-to-event voxel-based techniques to assess regional atrophy associated with mci risk of progression to ad. Neuroimage 54(2) (2011)Google Scholar
  17. 17.
    Tibshirani, R., et al.: The lasso method for variable selection in the cox model. Statistics in Medicine 16(4), 385–395 (1997)CrossRefGoogle Scholar
  18. 18.
    Gui, J., Li, H.: Penalized cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21(13), 3001–3008 (2005)CrossRefGoogle Scholar
  19. 19.
    Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis I: Segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)CrossRefGoogle Scholar
  20. 20.
    Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)CrossRefGoogle Scholar
  21. 21.
    Fischl, B., Sereno, M.I., Tootell, R.B.H., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8(4), 272–284 (1999)CrossRefGoogle Scholar
  22. 22.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions, vol. 1 (1994)Google Scholar
  23. 23.
    Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Cuingnet, R., et al.: Automatic classification of patients with Alzheimer’s disease from structural mri: A comparison of ten methods using the adni database. Neuroimage 56(2) (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mert R. Sabuncu
    • 1
  1. 1.A.A. Martinos Center for Biomedical Imaging, Harvard Medical SchoolMGHUSA

Personalised recommendations