Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1818 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2093))

Abstract

In this chapter we familiarize ourselves with semilinear stochastic evolution equations, which are the starting point of this monograph. Then we present our main results and give a glimpse into the most important methods and techniques which are used in this text.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.W. Alt, Lineare Funktionalanalysis, 5th revised edn. (Springer, Berlin, 2006)

    Google Scholar 

  2. A. Barth, A. Lang, Milstein approximation for advection-diffusion equations driven by multiplicative noncontinuous martingale noises. Appl. Math. Optim. 66(3), 387–413 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Barth, A. Lang, Multilevel Monte Carlo method with applications to stochastic partial differential equations. J. Comput. Math. 89(18), 2479–2498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Barth, A. Lang, Ch. Schwab, Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT Numer. Math. 53(1), 3–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Carstensen, An adaptive mesh-refining algorithm allowing for an H 1 stable L 2 projection onto Courant finite element spaces. Constr. Approx. 20(4), 549–564 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.M.C. Clark, R.J. Cameron, The maximum rate of convergence of discrete approximations for stochastic differential equations, in Stochastic Differential Systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978). Lecture Notes in Control and Information Sciences, vol. 25 (Springer, Berlin, 1980), pp. 162–171

    Google Scholar 

  7. S.G. Cox, J. van Neerven, Pathwise Hölder convergence of the implicit Euler scheme for semi-linear SPDEs with multiplicative noise. Numer. Math. 125(2), 259–345 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Da Prato, A. Lunardi, Maximal regularity for stochastic convolutions in L p spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 9(1), 25–29 (1998)

    Google Scholar 

  9. G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44 (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  10. G. Da Prato, S. Kwapien, J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23(3), 1–23 (1988)

    Article  Google Scholar 

  11. A. Debussche, Weak approximation of stochastic partial differential equations: The nonlinear case. Math. Comput. 80(273), 89–117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Debussche, J. Printems, Weak order for the discretization of the stochastic heat equation. Math. Comput. 78(266), 845–863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Geissert, M. Kovács, S. Larsson, Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT Numer. Math. 49, 343–356 (2009)

    Article  MATH  Google Scholar 

  14. M.B. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, in Monte Carlo and Quasi-Monte Carlo Methods 2006 (Springer, Berlin, 2008), pp. 343–358

    Book  Google Scholar 

  15. M.B. Giles, Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Glasserman, Monte Carlo Methods in Financial Engineering. Applications of Mathematics (New York), vol. 53. Stochastic Modelling and Applied Probability (Springer, New York, 2004)

    Google Scholar 

  17. A. Grorud, É. Pardoux, Intégrales Hilbertiennes anticipantes par rapport à un processus de Wiener cylindrique et calcul stochastique associé. Appl. Math. Optim. 25(1), 31–49 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Hausenblas, Approximation for semilinear stochastic evolution equations. Potential Anal. 18(2), 141–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Hausenblas, Weak approximation of the stochastic wave equation. J. Comput. Appl. Math. 235(1), 33–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Jentzen, P.E. Kloeden, The numerical approximation of stochastic partial differential equations. Milan J. Math. 77, 205–244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Jentzen, P.E. Kloeden, Taylor Approximations for Stochastic Partial Differential Equations. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 83 (SIAM, Philadelphia, 2011)

    Google Scholar 

  22. A. Jentzen, M. Röckner, A Milstein scheme for SPDEs (2012). Preprint [arXiv:1001.2751v4]

    Google Scholar 

  23. A. Jentzen, M. Röckner, Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Differ. Equ. 252(1), 114–136 (2012)

    Article  MATH  Google Scholar 

  24. A. Jentzen, P.E. Kloeden, A. Neuenkirch, Pathwise convergence of numerical schemes for random and stochastic differential equations, in Foundation of Computational Mathematics, ed. by F. Cucker, A. Pinkus, M. Todd (Cambridge University Press, Cambridge, 2009), pp. 140–161 (Hong Kong, 2008)

    Google Scholar 

  25. A. Jentzen, P.E. Kloeden, A. Neuenkirch, Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112(1), 41–64 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Kovács, S. Larsson, F. Lindgren, Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise. Numer. Algorithms 53(2–3), 309–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Kovács, S. Larsson, F. Lindgren, Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise. BIT Numer. Math. 52(1), 85–108 (2012)

    Article  MATH  Google Scholar 

  28. M. Kovács, S. Larsson, F. Lindgren, Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes. BIT Numer. Math. 53(2), 497–525 (2012). Preprint [arXiv:1203.2029v1]

    Google Scholar 

  29. R. Kruse, Consistency and stability of a Milstein-Galerkin finite element scheme for semilinear SPDE (2013). ArXiv Preprint [arXiv:1307.4120v1] (submitted)

    Google Scholar 

  30. R. Kruse, Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. (2013) (Online First)

    Google Scholar 

  31. R. Kruse, S. Larsson, Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise. Electron. J. Probab. 17(65), 1–19 (2012)

    MathSciNet  Google Scholar 

  32. A. Lang, P.-L. Chow, J. Potthoff, Almost sure convergence of a semidiscrete Milstein scheme for SPDEs of Zakai type. Stochastics 82(3), 315–326 (2010)

    MathSciNet  MATH  Google Scholar 

  33. J.A. León, D. Nualart, Stochastic evolution equations with random generators. Ann. Probab. 26(1), 149–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905 (Springer, Berlin, 2007)

    Google Scholar 

  35. M. Röckner, Z. Sobol, Kolmogorov equations in infinite dimensions: Well-posedness and regularity of solutions, with applications to stochastic generalized Burgers equations. Ann. Probab. 34(2), 663–727 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Röckner, Z. Sobol, A new approach to Kolmogorov equations in infinite dimensions and applications to the stochastic 2D Navier-Stokes equation. C. R. Math. Acad. Sci. Paris 345(5), 289–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. G.R. Sell, Y. You, Dynamics of Evolutionary Equations, vol. 143 (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  38. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 25 (Springer, Berlin, 2006)

    Google Scholar 

  39. J. van Neerven, M. Veraar, L. Weis, Stochastic maximal L p-regularity. SIAM J. Math. Anal. 44(3), 1372–1414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363–1384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kruse, R. (2014). Introduction. In: Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes in Mathematics, vol 2093. Springer, Cham. https://doi.org/10.1007/978-3-319-02231-4_1

Download citation

Publish with us

Policies and ethics