Representing Environmental Knowledge in EcoLexicon

  • Pamela FaberEmail author
  • Pilar León-Araúz
  • Arianne Reimerink
Part of the Educational Linguistics book series (EDUL, volume 19)


EcoLexicon is a multilingual terminological knowledge base (TKB) on the environment, which provides an internally coherent information system covering a wide range of specialized linguistic and conceptual needs. Our research has mainly focused on conceptual modeling with a view to offering a user-friendly multimodal interface. The dynamic interface of EcoLexicon combines conceptual, linguistic, and graphical information and is primarily hosted in a relational database that has been recently linked to an ontology. One of the main challenges that we have faced in the development of our TKB is the information overload generated by the specialized domain. This is not only due to the wide scope and applicability of environmental concepts, but especially to the fact that multiple dimensions of their meaning definition or conceptual description are not always compatible but rather context-dependent. As a result, concepts with an information overload have been reconceptualized according to two contextual factors: domain membership and semantic role. This reduces the amount of conceptual information accessed by the user, and makes the knowledge representation easier to process.


Conceptual Relation Environmental Domain Conceptual Network Formal Role Concept Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anglin, G., H. Vaez, and K.L. Cunningham. 2004. Visual representations and learning: The role of static and animated graphic. Visualization and Learning 33: 865–917.Google Scholar
  2. Barsalou, L.W. 2003. Situated simulation in the human conceptual system. Language and Cognitive Processes 18: 513–562.CrossRefGoogle Scholar
  3. Barsalou, L.W. 2005. Situated conceptualization. In Handbook of categorization in cognitive science, ed. H. Cohen and C. Lefebvre, 619–650. St Louis: Elsevier.CrossRefGoogle Scholar
  4. Barsalou, L.W. 2009. Simulation, situated conceptualization and prediction. Philosophical Transactions of the Royal Society of London: Biological Sciences 364: 1281–1289.CrossRefGoogle Scholar
  5. Bizer, C., and A. Seaborne. 2004. D2RQ-treating non-RDF databases as virtual RDF graphs. In Proceedings of the 3rd international semantic web conference (ISWC2004).Google Scholar
  6. Damasio, A., and H. Damasio. 1994. Cortical systems for retrieval of concrete knowledge: The convergence zone framework. In Large-scale neuronal theories of the brain, ed. C. Koch and J. Davis. Cambridge, MA: MIT Press.Google Scholar
  7. Evans, V. 2009. Cognitive linguistics. In Encyclopedia of pragmatics, ed. L. Cummings. Available at: Accessed 15 May 2013.
  8. Faber, P. 2011. The dynamics of specialized knowledge representation: Simulational reconstruction or the perception-action interface. Terminology 17(1): 9–29.CrossRefGoogle Scholar
  9. Faber, P. 2012. A cognitive linguistics view of terminology and specialized language. Berlin: Mouton de Gruyter.CrossRefGoogle Scholar
  10. Faber, P., C. Márquez Linares, and M. Vega Expósito. 2005. Framing terminology: A process-oriented approach. META 50(4): CD-ROM.Google Scholar
  11. Faber, P., S. Montero Martínez, M.C. Castro Prieto, et al. 2006. Process-oriented terminology management in the domain of coastal engineering. Terminology 12(2): 189–213.CrossRefGoogle Scholar
  12. Faber, P., P. León Araúz, J.A. Prieto Velasco, et al. 2007. Linking images and words: The description of specialized concepts (extended version). International Journal of Lexicography 20(1): 39–65.CrossRefGoogle Scholar
  13. GEMET. 2004. About GEMET. General multilingual environmental thesaurus. Available at: Accessed 15 May 2013.
  14. Holt, L.E., and S.L. Beilock. 2006. Expertise and its embodiment: Examining the impact of sensorimotor skill expertise on the representation of action-related text. Psychonomic Bulletin and Review 13: 694–701.CrossRefGoogle Scholar
  15. House, J. 2006. Text and context in translation. Journal of Pragmatics 38: 338–358.CrossRefGoogle Scholar
  16. Kageura, K. 1997. Multifaceted/multidimensional concept systems. In Handbook of terminology management: Basic aspects of terminology management, ed. S.E. Wright and G. Budin, 119–132. Amsterdam/Philadelphia: John Benjamins.Google Scholar
  17. Langacker, R.W. 1987. Foundations of cognitive grammar: Theoretical prerequisites, vol. 1. Stanford: Stanford University Press.Google Scholar
  18. Lenci, A., N. Bel, F. Busa, et al. 2000. SIMPLE: A general framework for the development of multilingual lexicons. International Journal of Lexicography 13(4): 248–263.CrossRefGoogle Scholar
  19. León Araúz, P. 2009. Representación multidimensional del conocimiento especializado: el uso de marcos desde la macroestructura hasta la microestructura. Ph.D. thesis, University of Granada, Granada, Spain.Google Scholar
  20. León Araúz, P., and P. Faber. 2010. Natural and contextual constraints for domain-specific relations. In Proceedings of semantic relations. Theory and applications, Malta.Google Scholar
  21. León Araúz, P., and P.J. Magaña Redondo. 2010. EcoLexicon: Contextualizing an environmental ontology. In Proceedings of the terminology and knowledge engineering (TKE) conference 2010, Dublin City University, Dublin.Google Scholar
  22. León Araúz, P., P.J. Magaña Redondo, and P. Faber. 2009. Managing inner and outer overinformation in Ecolexicon: An environmental ontology. In Proceedings of the 8th international conference on terminology and artificial intelligence, Toulouse.Google Scholar
  23. León Araúz, P., A. Reimerink, and A. Garcia-Aragón. 2013. Dynamism and context in specialized knowledge. Terminology 19(1): 31–61.CrossRefGoogle Scholar
  24. Meyer, I., L. Bowker, and K. Eck. 1992. COGNITERM: An experiment in building a knowledge-based term bank. In Proceedings of Euralex ’92, 159–172Google Scholar
  25. Prieto Velasco, J.A. 2008. Información gráfica y grados de especialidad en el discurso científico-técnico: un estudio de corpus. Ph.D. thesis, University of Granada, Granada.Google Scholar
  26. Pustejovsky J, C. Havasi, J. Littman, et al. 2006. Towards a generative lexical resource: The brandeis semantic ontology. In Proceedings of LREC 2006, Genoa.Google Scholar
  27. Reimerink, A., M. García de Quesada, and S. Montero Martínez. 2010. Contextual information in terminological bases: A multimodal approach. Journal of Pragmatics 42(7): 1928–1950. doi: 10.1016/j.pragma.2009.12.008.CrossRefGoogle Scholar
  28. Rosch, E. 1978. Principles of categorization. In Cognition and categorization, ed. E. Rosch and B.B. Lloyd, 27–28. Hillsdale: Erlbaum.Google Scholar
  29. Smith, M., C. Welty, and D. McGuinness (eds.). 2004. OWL Web ontology language guide. W3C Recommendations.Google Scholar
  30. Tucker, M., and R. Ellis. 1998. On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance 24: 830–846.Google Scholar
  31. Tucker, M., and R. Ellis. 2001. The potentiation of grasp types during visual object categorization. Visual Cognition 8: 769–800.CrossRefGoogle Scholar
  32. Yeh, W., and L.W. Barsalou. 2006. The situated nature of concepts. American Journal of Psychology 119: 349–384.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pamela Faber
    • 1
    Email author
  • Pilar León-Araúz
    • 1
  • Arianne Reimerink
    • 1
  1. 1.Departamento de Traducción e interpretaciónUniversidad de GranadaGranadaSpain

Personalised recommendations