Skip to main content

Formation Flying, Cosmology and General Relativity: A Tribute to Far-Reaching Dreams of Mino Freund

  • Conference paper
Universe of Scales: From Nanotechnology to Cosmology

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 150))

  • 621 Accesses

Abstract

Mino had a wondrously wide range of interests and projects. I would like to address three areas that will carry into the future some of Mino’s dreams, his concept of swarms of satellites flying in formation, observing the dark un-observed domain of the past universe and the testing of General Relativity involved in the fundamental inconsistency of General Relativity and Quantum Mechanics—the ultimate in the connection of the macro to the micro scales of the physical universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.O. Alley, R.F. Chang, D.G. Currie et al., Apollo 11 laser ranging retro-reflector: initial measurements from the McDonald Observatory. Science 167(3917), 368 (1970)

    Article  ADS  Google Scholar 

  2. J.C. Andrews-Hanna, F. Nimmo, J.W. Head, M.A. Wieczorek, W.S. Kiefer, G.J. Taylor, S.W. Asmar, A.S. Konopliv, F.G. Lemoine, E. Mazarico, P.J. McGovern, H.J. Melosh, G.A. Neumann, R.J. Phillips, D.E. Smith, S.C. Solomon, J.G. Williams, M.T. Zuber, Ancient igneous intrusions and the early expansion of the Moon revealed by GRAIL gravity gradiometry. Science 339, 675–678 (2013)

    Article  ADS  Google Scholar 

  3. Astrobotics, http://www.astrobotic.com/

  4. P.L. Bender, D.G. Currie et al., The lunar laser ranging experiment. Science 182(4109), 229–238 (1973)

    Article  ADS  Google Scholar 

  5. J.O. Burns, J. Lazio, Year 3 LUNAR Annual Report to the NASA Lunar Science Institute (2012), eprint arXiv:1204.3574

  6. J.O. Burns, T.J.W. Lazio et al., Probing the first stars and black holes with the Dark Ages Radio Explorer (DARE). Adv. Space Res. 49, 433–450 (2012)

    Article  ADS  Google Scholar 

  7. Committee on the Scientific Context for Exploration of the Moon, The Scientific Context for Exploration of the Moon (National Academies Press, Washington, 2007), pp. 1–120

    Google Scholar 

  8. O. Calame, Free librations of the moon determined by an analysis of laser range measurements. The Moon 15(June-July), 343–352 (1976). Research supported by the Centre National de la Recherche Scientifique of France

    Article  ADS  Google Scholar 

  9. O. Calame, Free librations of the moon from lunar laser ranging, in Scientific Applications of Lunar Laser Ranging, Proceedings of a Symposium, Austin, Texas, USA, June 8–10, 1976, ed. by J.D. Mulholland. Astrophysics and Space Science Library, vol. 62 (Reidel, Dordrecht, 1976), p. 53

    Google Scholar 

  10. R.F. Chang, D.G. Currie, C.O. Alley, M.E. Pittman, Far-field diffraction pattern for corner reflectors with complex reflection coefficients. J. Opt. Soc. Am. 61(4), 431 (1971)

    Article  ADS  Google Scholar 

  11. J. Chapront, Improvements of planetary theories over 6000 years. Celest. Mech. Dyn. Astron. 78(1/4), 75–82 (2000)

    Article  ADS  MATH  Google Scholar 

  12. D.G. Currie, S. Dell’Agnello, G.O. Delle Monache, A lunar laser ranging retroreflector array for the 21st century. Acta Astronaut. 68(7–8), 667–680 (2011)

    Article  ADS  Google Scholar 

  13. D.G. Currie, S. Dell’Agnello, G.O. Delle Monache, Lunar laser ranging retroreflector for the 21st century, in 17th International Workshop on Laser Ranging, Proceedings of the Conference, 16–20 May 2011, Bad Kotzing, Germany (2011). Published online at http://cddis.gsfc.nasa.gov/lw17

    Google Scholar 

  14. D.G. Currie, S. Dell’Agnello, G.O. Delle Monache, K. Zacny, B. Behr, Current status and expected performance of the lunar laser ranging retroreflector for the 21st century, in 63rd International Astronautical Congress, 1–5 October 2012, Naples, Italy (2012)

    Google Scholar 

  15. S. Dell’Agnello, G.O. Delle Monache, D.G. Currie et al., Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS. Adv. Space Res. 47(5), 822–842 (2011)

    Article  ADS  Google Scholar 

  16. S. Dell’Agnello, G.O. Delle Monache, D.G. Currie et al., ETRUSCO-2: an ASI-INFN project of development and SCF-Test of GNSS Retroreflector Arrays (GRA) for Galileo and the GPS-3, in 17th International Workshop on Laser Ranging, Proceedings of the Conference, 16–20 May, 2011, Bad Kotzing, Germany (2011). Published online at http://cddis.gsfc.nasa.gov/lw17

    Google Scholar 

  17. S. Dell’Agnello, M. Maiello, D.G. Currie, Probing general relativity and new physics with lunar laser ranging. Nucl. Instrum. Methods Phys. Res. A 692, 275–279 (2012)

    Article  ADS  Google Scholar 

  18. S.D. Goodrow, T.W. Murphy, Effects of thermal gradients on total internal reflection corner cubes. Appl. Opt. 51(36), 8793 (2012)

    Article  ADS  Google Scholar 

  19. Google Lunar X Prize (GLXP), http://www.googlelunarxprize.org/

  20. HoneyBee Corporation, http://www.honeybeerobotics.com

  21. International Space Exploration Coordination Group (ISECG), Global Exploration Roadmap (2011). http://www.nasa.gov/pdf/591066main_GER_2011_for_release.pdf

  22. W. Jin, J. Li, Determination of some physical parameters of the moon with lunar laser ranging data. Earth Moon Planets 73(3), 259–265 (1996)

    Article  ADS  Google Scholar 

  23. W.S. Kiefer, P.J. McGovern, J.C. Andrews-Hanna, J.W. Head III., J.G. Williams, M.T. Zuber, the GRAIL Science Team, GRAIL gravity observations of lunar volcanic complexes, abstract #2030, in Lunar and Planetary Science Conference, XLIV, The Woodlands, TX, March 18–22 (2013)

    Google Scholar 

  24. A. Khan, K. Mosegaard, J.G. Williams et al., The core of the Moon—molten or solid? in 36th Annual Lunar and Planetary Science Conference, March 14–18, 2005, League City, Texas (2004). Abstract no. 1122

    Google Scholar 

  25. A. Lue, G.D. Starkman, Squeezing MOND into a Cosmological Scenario (2003), eprint arXiv:astro-ph/0310005

  26. F. Lyard, F. Lefevre, T. Letellier, O. Francis, Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56(5–6), 394–415 (2006)

    Article  ADS  Google Scholar 

  27. M. Martini, S. Dell’Agnello, D. Currie, MoonLIGHT: a USA-Italy lunar laser ranging retroreflector array for the 21st century. Planet. Space Sci. 74(1), 276–282 (2012)

    Article  ADS  Google Scholar 

  28. D.D. McCarthy, G. Petit, 2004 IERS Conventions (2003)

    Google Scholar 

  29. T.W. Murphy, E.G. Adelberger, J.B.R. Battat, L.N. Carey, C.D. Hoyle, P. Leblanc, E.L. Michelsen, K. Nordtvedt, A.E. Orin, J.D. Strasburg, C.W. Stubbs, H.E. Swanson, E. Williams, The Apache Point Observatory lunar laser-ranging operation: instrument description and first detections. Publ. Astron. Soc. Pac. 120, 20 (2008)

    Article  ADS  Google Scholar 

  30. T.W. Murphy Jr., E.G. Adelberger, J.B.R. Battat et al., APOLLO: millimeter lunar laser ranging. Class. Quantum Gravity 29(18), 184005 (2012)

    Article  ADS  Google Scholar 

  31. NLSI NASA Lunar Science Institute, http://lunarscience.nasa.gov/

  32. J.R. Pritchard, A. Loeb, 21 cm cosmology in the 21st century. Rep. Prog. Phys. 75 (2012). http://iopscience.iop.org/0034-4885/75/8/086901

  33. N. Rambaux, J.G. Williams, The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 109, 85–100 (2011). Online version including tables Oct. 26, 2010, doi:10.1007/s10569-010-9314-2

    Article  ADS  MATH  Google Scholar 

  34. B.G. Bills, R.D. Ray, Lunar orbital evolution: a synthesis of recent results. Geophys. Res. Lett. 26(19), 3045–3048 (1999) (GeoRL Homepage)

    Article  ADS  Google Scholar 

  35. R.D. Ray, D.E. Cartwright, Times of peak astronomical tides. Geophys. J. Int. 168(3), 999–1004 (2007)

    Article  ADS  Google Scholar 

  36. S. Sasaki, Accuracy assessment of lunar topography models. Earth Planets Space 63, 15–23 (2011). Special Issue: New Results of Lunar Science with KAGUYA (SELENE)

    Article  ADS  Google Scholar 

  37. SELENE-2, http://www.jspec.jaxa.jp/e/activity/selene2.html

  38. E.C. Silverberg, D.G. Currie, Performance of the laser-ranging system at McDonald Observatory. J. Opt. Soc. Am. 61, 692–693 (1971)

    ADS  Google Scholar 

  39. E.M. Standish, J.G. Williams, Orbital ephemerides of the Sun, Moon, and planets, in Explanatory Supplement to the Astronomical Almanac, ed. by S. Urban, P.K. Seidelmann, US Naval Observatory, Washington, DC, 3rd edn. (University Science Books, Mill Valley, 2012), pp. 305–345, Chap. 8, http://iau-comm4.jpl.nasa.gov/XSChap8.pdf, ISBN 978-1-891389-85-6

    Google Scholar 

  40. D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, E. Mazarico, M.H. Torrence, J.F. McGarry, D.D. Rowlands, J.W. Head III., T.H. Duxbury, O. Aharonson, P.G. Lucey, M.S. Robinson, O.S. Barnouin, J.F. Cavanaugh, X. Sun, P. Liiva, D. Mao, J.C. Smith, A.E. Bartels, Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37, L18204 (2010)

    ADS  Google Scholar 

  41. T.K. Varghese, W.M. Decker, H.A. Crooks, Matera Laser Ranging Observatory (MLRO): an overview, in NASA Goddard Space Flight Center, Eighth International Workshop on Laser Ranging Instrumentation (1993), 5 p. (SEE N94-15552 03-19)

    Google Scholar 

  42. R.C. Weber, P.-Y. Lin, E.J. Garnero et al., Seismic detection of the lunar core. Science 331, 309–312 (2011)

    Article  ADS  Google Scholar 

  43. M.A. Wieczorek, G.A. Neumann, F. Nimmo, W.S. Kiefer, G.J. Taylor, R.J. Phillips, S.C. Solomon, J.C. Andrews-Hanna, S.W. Asmar, A.S. Konopliv, F.G. Lemoine, D.E. Smith, M.M. Watkins, J.G. Williams, M.T. Zuber, The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013)

    Article  ADS  Google Scholar 

  44. C.M. Will, K. Nordtvedt, Conservation laws and preferred frames in relativistic gravity 1: preferred-frame theories and an extended PPN formalism. Astrophys. J. 177(3), 757 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  45. J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res., Planets 106, 27933–27968 (2001)

    Article  ADS  Google Scholar 

  46. J.G. Williams, S.G. Turyshev, D.H. Boggs et al., Lunar laser ranging science: gravitational physics and lunar interior and geodesy. Adv. Space Res. 37, 67–71 (2006)

    Article  ADS  Google Scholar 

  47. J.G. Williams, A.S. Konopliv, D.H. Boggs, R.S. Park, D.-N. Yuan, F.G. Lemoine, S.J. Goossens, E. Mazarico, F. Nimmo, R.C. Weber, S.W. Asmar, H.J. Melosh, G.A. Neumann, R.J. Phillips, D.E. Smith, S.C. Solomon, M.M. Watkins, M.A. Wieczorek, M.T. Zuber, J.C. Andrews-Hanna, J.W. Head, W.S. Kiefer, I. Isamu, P.J. McGovern, C.W. Stubbs, G.J. Taylor, Lunar interior properties from the GRAIL mission. 44th Lunar and Planetary Science Conference, held March 18–22, 2013 in The Woodlands, TX. LPI Contribution No. 1719, p. 3092

    Google Scholar 

  48. J.G. Williams, D.H. Boggs, W.M. Folkner, DE430 Lunar Orbit, Physical Librations, and Surface Coordinates, JPL IOM 335-JW, DB, WF (2013, in preparation)

    Google Scholar 

  49. C.F. Yoder, Venus’ free obliquity. Icarus 117, 250–286 (1995)

    Article  ADS  Google Scholar 

  50. M.T. Zuber, D.E. Smith, M.M. Watkins, S.W. Asmar, A.S. Konopliv, F.G. Lemoine, H.J. Melosh, G.A. Neumann, F. Nimmo, R.J. Phillips, S.C. Solomon, M.A. Wieczorek, J.G. Williams, S.J. Goossens, G. Kruizinga, E. Mazarico, R.S. Park, D.-N. Yuan, Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science 339, 668–671 (2013). doi:10.1126/Science.1231507

    Article  ADS  Google Scholar 

  51. K. Zacny, D. Currie, G. Paulsen, T. Szwarc, P. Chu, Development and testing of the pneumatic lunar drill for the emplacement of the corner cube reflector on the moon. Planet. Space Sci. 71, 131–141 (2012). 2012. doi:10.1016/j.pss.2012.07.025

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Portions of this research have been supported by NASA Headquarters via the Lunar Science Sortie Opportunities (LSSO) program, by the Planetary Science Division through the NASA Lunar Science Institute to the University of Colorado under the University of Maryland Contract, as well as support by the University of Maryland, College Park. The work of S.D.’A. and G.D.M. is supported by INFN (Istituto Nazionale di Fisica Nucleare, Italy), as part of the MoonLIGHT-2 experiment in the framework of the research activities of the Commissione Scientifica Nazionale n. 2 (CSN2).

Other portions of this research have been supported by the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (INFN-LNF), Frascati, Italy and the Italian Space Agency (IAS).

A portion of the research described in this paper was carried out at the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

The first author also wishes to thank Jack Schmidt for discussions and the video.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Currie, D., Williams, J., Dell’Agnello, S., Delle Monache, G., Behr, B., Zacny, K. (2014). Formation Flying, Cosmology and General Relativity: A Tribute to Far-Reaching Dreams of Mino Freund. In: Freund, F., Langhoff, S. (eds) Universe of Scales: From Nanotechnology to Cosmology. Springer Proceedings in Physics, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-319-02207-9_14

Download citation

Publish with us

Policies and ethics