Skip to main content

Simplified Models for Coarse-Grained Hemodynamics Simulations

  • Conference paper
  • First Online:
  • 1498 Accesses

Abstract

Human blood can be approximated as a dense suspension of red blood cells in plasma. Here, we present two models we recently developed to investigate blood flow on different scales: in the first part of the paper we concentrate on describing individual cells or model systems such as vesicles with high resolution in order to understand the underlying fundamental properties of bulk hemodynamics. Here, we combine a lattice Boltzmann solver for the plasma with an immersed boundary algorithm to describe the cell or vesicle membranes. This method allows a detailed study of individual particles in complex hydrodynamic situations. Further, this model can be used to provide parameters for a more coarse-grained approach: in that second approach we simplify much further than existing particulate models. We find the essential ingredients for a minimalist description that still recovers hemorheology. These ingredients include again a lattice Boltzmann method describing hydrodynamic long range interactions mediated by the plasma between cells. The cells themselves are simplified as rigid ellipsoidal particles, where we describe the more complex short-range behavior by anisotropic model potentials. Recent results on the behaviour of single viscous red blood cells and vesicles in confined flow situations are shown alongside with results from the validation of our simplified model involving thousands or even millions of cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.L. Goldsmith, R. Skalak, Hemodynamics. Annu. Rev. Fluid Mech. 7, 213–247 (1975)

    Article  Google Scholar 

  2. E. Evans, Y.C. Fung, Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 335–347 (1972)

    Article  Google Scholar 

  3. J. Boyd, J.M. Buick, S. Green, Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phys. Fluids 19, 093103 (2007)

    Article  Google Scholar 

  4. H. Noguchi, G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl. Acad. Sci. USA 102, 14159–14164 (2005)

    Article  Google Scholar 

  5. M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn, Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75, 066707 (2007)

    Article  Google Scholar 

  6. J. Wu, C.K. Aidun, Simulating 3D deformable particle suspensions using lattice boltzmann method with discrete external boundary force. Int. J. Numer. Methods Fluids 62(7), 765–783 (2010)

    MATH  Google Scholar 

  7. T. Krüger, F. Varnik, D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485–3505 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Krüger, F. Varnik, D. Raabe, Particle stress in suspensions of soft objects. Philos. Trans. R. Soc. Lond. A 369, 2414–2421 (2011)

    Article  MATH  Google Scholar 

  9. C. Sun, C. Migliorini, L.L. Munn, Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice boltzmann analysis. Biophys. J. 85(1), 208–222 (2003)

    Article  Google Scholar 

  10. T. Hyakutake, T. Matsumoto, S. Yanase, Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations. Math. Comput. Simul. 72(2–6), 134–140 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Janoschek, F. Toschi, J. Harting, Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E 82, 056710 (2010)

    Article  Google Scholar 

  12. T.M. Fischer, Is the surface area of the red cell membrane skeleton locally conserved? Biophys. J. 61, 298 (1992)

    Article  Google Scholar 

  13. B. Kaoui, J. Harting, C. Misbah, Two-dimensional vesicle dynamics under shear flow: effect of confinement. Phys. Rev. E 83, 066319 (2011)

    Article  Google Scholar 

  14. B. Kaoui, T. Krüger, J. Harting, How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter 8, 9246 (2012)

    Article  Google Scholar 

  15. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  16. C. Peskin, The immersed boundary method. Acta Numer. 11, 479 (2002)

    MATH  MathSciNet  Google Scholar 

  17. C.K. Aidun, Y. Lu, E.-J. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287–311 (1998)

    Article  MATH  Google Scholar 

  18. N.-Q. Nguyen, A.J.C. Ladd, Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66, 046708 (2002)

    Article  Google Scholar 

  19. S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–979 (1970)

    Article  Google Scholar 

  20. B.J. Berne, P. Pechukas, Gaussian model potentials for molecular interactions. J. Chem. Phys. 56, 4213–4216 (1972)

    Article  Google Scholar 

  21. J. Harting, J. Chin, M. Venturoli, P.V. Coveney, Large-scale lattice boltzmann simulations of complex fluids: advances through the advent of computational grids. Philos. Trans. R. Soc. Lond. A 363, 1895–1915 (2005)

    Article  MathSciNet  Google Scholar 

  22. F. Janoschek, F. Toschi, J. Harting, Simulations of blood flow in plain cylindrical and constricted vessels with single cell resolution. Macromol. Theory Simul. 20, 562 (2011)

    Article  Google Scholar 

  23. F. Günther, F. Janoschek, S. Frijters, J. Harting, Lattice boltzmann simulations of anisotropic particles at liquid interfaces. Comput. Fluids 80, 184 (2013)

    Article  Google Scholar 

  24. J. Harting, T. Zauner, A. Narvaez, R. Hilfer, Flow in porous media and driven colloidal suspensions, in High Performance Computing in Science and Engineering ’08, ed. by W. Nagel, D. Kröner, M. Resch (Springer, Berlin, 2008)

    Google Scholar 

  25. S. Schmieschek, A. Narváez Salazar, J. Harting, Multi relaxation time lattice boltzmann simulations of multiple component fluid flows in porous media, in High Performance Computing in Science and Engineering ’12, ed. by W. Nagel, D. Kröner, M. Resch (Springer, Berlin, 2013), p. 39

    Google Scholar 

  26. A.M. Forsyth, J.D. Wan, P.D. Owrutsky, M. Abkarian, H.A. Stone, Multiscale approach to link red blood cell dynamics, shear viscosity, and atp release. Proc. Natl. Acad. Sci. USA 108, 10986 (2011)

    Article  Google Scholar 

  27. V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, T. Podgorski, Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys. J. 95, L33 (2008)

    Article  Google Scholar 

  28. S. Keller, R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 27 (1982)

    Article  MATH  Google Scholar 

  29. J. Beaucourt, F. Rioual, T. Seon, T. Biben, C. Misbah, Steady to unsteady dynamics of a vesicle in a flow. Phys. Rev. E 69, 011906 (2004)

    Article  Google Scholar 

  30. V. Kantsler, V. Steinberg, Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96, 036001 (2006)

    Article  Google Scholar 

  31. G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161 (1922)

    Article  Google Scholar 

  32. H. Noguchi, G. Gompper, Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98, 128103 (2007)

    Article  Google Scholar 

  33. V.V. Lebedev, K.S. Turitsyn, S.S. Vergeles, Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99, 218101 (2007)

    Article  Google Scholar 

  34. B. Kaoui, A. Farutin, C.C. Misbah, Vesicles under simple shear flow: elucidating the role of relevant control parameters. Phys. Rev. E 80, 061905 (2009)

    Article  Google Scholar 

  35. J. Deschamps, V. Kantsler, V. Steinberg, Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102, 118105 (2009)

    Article  Google Scholar 

  36. T. Krüger, S. Frijters, F. Günther, B. Kaoui, J. Harting, Numerical simulations of complex fluid-fluid interface dynamics. Eur. Phys. J. Spec. Topics 222, 177 (2013)

    Article  Google Scholar 

  37. A.J. Wagner, J.M. Yeomans, Phase separation under shear in two-dimensional binary fluids. Phys. Rev. E 59, 4366–4373 (1999)

    Article  Google Scholar 

  38. F. Janoschek, F. Mancini, J. Harting, F. Toschi, Rotational behavior of red blood cells in suspension—a mesoscale simulation study. Philos. Trans. R. Soc. Lond. A 369(1944), 2337–2344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. A.S. Popel, P.C. Johnson, Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37(1), 43–69 (2005)

    Article  MathSciNet  Google Scholar 

  40. A.R. Pries, D. Neuhaus, P. Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. Heart Circ. Physiol. 263(6), H1770–1778 (1992)

    Google Scholar 

  41. T.W. Secomb, Mechanics of red blood cells and blood flow in narrow tubes, in Modeling and Simulation of Capsules and Biological Cells, ed. by C. Pozrikidis (Chapman & Hall, London, 2003), pp. 163–196

    Google Scholar 

Download references

Acknowledgements

We thank the Scientific Supercomputing Center Karlsruhe for providing the computing time and technical support for the presented work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Harting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Harting, J., Janoschek, F., Kaoui, B., Krüger, T., Toschi, F. (2013). Simplified Models for Coarse-Grained Hemodynamics Simulations. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_4

Download citation

Publish with us

Policies and ethics