Skip to main content

Large-Eddy Simulation of the Particle-Laden Turbulent Flow in a Cyclone Separator

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13
  • 1567 Accesses

Abstract

A gas cyclone separator represents a classic field of application where turbulent particle-laden flows play a major role. In order to evaluate the performance of a recently developed Euler–Lagrange simulation tool based on the large-eddy simulation (LES) technique and the point-particle approach, this practically relevant flow problem is considered in the present study. As a first step towards a full simulation taking all interactions between the two phases (fluid–particle, particle–fluid and particle–particle) into account, a one-way coupled prediction is carried out. Nevertheless, the entire simulation methodology is described in detail including a sandgrain roughness model and a deterministic collision model. For the latter a performance analysis was carried out demonstrating that even for a high mass loading the computational effort for the collision detection remains below 10 % of the entire CPU-time. The predicted LES results for the cyclone flow are compared with corresponding measurements and a reasonable agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Alletto, M. Breuer, One-way, two-way and four-way coupled LES predictions of a particle-laden turbulent flow at high mass loading downstream of a confined bluff body. Int. J. Multiphase Flow 45, 70–90 (2012)

    Article  Google Scholar 

  2. M. Alletto, M. Breuer, Prediction of turbulent particle-laden flow in horizontal smooth and rough pipes inducing secondary flow. Int. J. Multiphase Flow 55, 80–98 (2013)

    Article  Google Scholar 

  3. J. Bardina, J.H. Ferziger, W.C. Reynolds, Improved subgrid-scale models for large-eddy simulations. AIAA Paper, 80-1357 (1980)

    Google Scholar 

  4. M. Breuer, Large-eddy simulation of the sub-critical flow past a circular cylinder: numerical and modeling aspects. Int. J. Numer. Methods Fluids 28(9), 1281–1302 (1998)

    Article  MATH  Google Scholar 

  5. M. Breuer, Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Universität Erlangen–Nürnberg, Berichte aus der Strömungstechnik (Shaker Verlag, Aachen, 2002). ISBN 3-8265-9958-6

    Google Scholar 

  6. M. Breuer, M. Alletto, Efficient simulation of particle-laden turbulent flows with high mass loadings using LES. Int. J. Heat Fluid Flow 35, 2–12 (2012)

    Article  Google Scholar 

  7. M. Breuer, M. Alletto, Numerical simulation of particle-laden turbulent flows using LES, in High Performance Computing in Science and Engineering ’11, ed. by W.E. Nagel, D.B. Kröner, M.M. Resch (Springer, Berlin, 2012), pp. 337–352. ISBN 978-3-642-23868-7

    Google Scholar 

  8. M. Breuer, M. Alletto, Effect of wall roughness seen by particles in turbulent channel and pipe flows, in High Performance Computing in Science and Engineering ’12, ed. by W.E. Nagel, D.B. Kröner, M.M. Resch (Springer, Berlin, 2013), pp. 277–293. ISBN 978-3-642-33373-6

    Chapter  Google Scholar 

  9. M. Breuer, H.T. Baytekin, E.A. Matida, Prediction of aerosol deposition in 90 degrees bends using LES and an efficient Lagrangian tracking method. J. Aerosol Sci. 37(11), 1407–1428 (2006)

    Article  Google Scholar 

  10. M. Breuer, E.A. Matida, A. Delgado, Prediction of aerosol drug deposition using an Eulerian-Lagrangian method based on LES, in International Conference on Multiphase Flow, Leipzig, Germany, 9–13 July 2007

    Google Scholar 

  11. M. Breuer, P. Lammers, T. Zeiser, G. Hager, G. Wellein, Direct numerical simulation of turbulent flow over dimples—code optimization for NEC SX-8 plus flow results, in High Performance Computing in Science and Engineering ’07, 10th Results and Review Workshop on High Performance Computing in Science and Engineering, Oct. 04–05, 2007, ed. by W.E. Nagel, D. Kröner, M. Resch, University of Stuttgart, Germany, 2008, pp. 303–318

    Google Scholar 

  12. M. Breuer, M. Alletto, F. Langfeldt, Sandgrain roughness model for rough walls within Eulerian-Lagrangian predictions of turbulent flows. Int. J. Multiphase Flow 43, 157–175 (2012)

    Article  Google Scholar 

  13. C.T. Crowe, M.P. Sharma, D.E. Stock, The Particle-Source-In-Cell (PSI-CELL) model for gas-droplet flows. Trans. ASME J. Fluids Eng. 99, 325–332 (1977)

    Article  Google Scholar 

  14. C.T. Crowe, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles (CRC Press, Boca Raton, 1998)

    Google Scholar 

  15. F.J. de Souza, R. de Vasconcelos Salvo, D.A. de Moro Martins, Large-eddy simulation of the gas-particle flow in cyclone separators. Sep. Purif. Technol. 94, 61–70 (2012)

    Article  Google Scholar 

  16. J.J. Derksen, Separation performance prediction of a Stairmand high-efficiency cyclone. AIChE J. 49(6), 1359–1371 (2003)

    Article  Google Scholar 

  17. J.J. Derksen, S. Sundaresan, H.E.A. van den Akker, Simulation of mass-loading effects in gas-solid cyclone separators. Powder Technol. 163, 59–68 (2006)

    Article  Google Scholar 

  18. J.J. Derksen, H.E.A. van den Akker, S. Sundaresan, Two-way coupled large-eddy simulations of the gas-solid flow in cyclone separators. AIChE J. 54(4), 872–885 (2008)

    Article  Google Scholar 

  19. G. Gronald, J.J. Derksen, Simulating turbulent swirl flow in a gas cyclone: a comparison of various modeling approaches. Powder Technol. 205, 160–171 (2011)

    Article  Google Scholar 

  20. C. Marchioli, V. Armenio, A. Soldati, Simple and accurate scheme for fluid velocity interpolation for Eulerian-Lagrangian computation of dispersed flow in 3D curvilinear grids. Comput. Fluids 36, 1187–1198 (2007)

    Article  MATH  Google Scholar 

  21. M.R. Maxey, J.J. Riley, Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883–889 (1983)

    Article  MATH  Google Scholar 

  22. J.B. McLaughlin, Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261–274 (1991)

    Article  MATH  Google Scholar 

  23. S Obermair, Einfluss der Feststoffaustragungsgeometrie auf die Abscheidungsrate und den Druckverlust eines Gaszyklons, Ph.D. thesis, Technische Universität Graz, Austria, 2002

    Google Scholar 

  24. S. Obermair, J. Woisetschläger, G. Staudinger, Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry. Powder Technol. 138, 239–251 (2003)

    Article  Google Scholar 

  25. S. Obermair, C. Gutschi, J. Woisetschläger, G. Staudinger, Flow pattern and agglomeration in the dust outlet of a gas cyclone investigated by phase Doppler anemometry. Powder Technol. 156, 34–42 (2005)

    Article  Google Scholar 

  26. J. Pozorski, S.V. Apte, Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Int. J. Multiphase Flow 35, 118–128 (2009)

    Article  Google Scholar 

  27. A. Raufeisen, M. Breuer, V. Kumar, T. Botsch, F. Durst, LES and DNS of melt flow and heat transfer in Czochralski crystal growth, in High Performance Computing in Science and Engineering ’06, ed. by W.E. Nagel, W. Jäger, M. Resch. Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2006 (Springer, Berlin, 2007), pp. 279–291

    Google Scholar 

  28. H. Reichardt, Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. Angew. Math. Mech. 31, 208–219 (1951)

    Article  MATH  Google Scholar 

  29. S.I. Rubinow, J.B. Keller, The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447–459 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  30. U. Schumann, Subgrid-scale model for finite-difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Shalaby, K. Pachler, K. Wozniak, G. Wozniak, Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Numer. Methods Fluids 48(11), 1175–1197 (2005)

    Article  MATH  Google Scholar 

  32. J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99–165 (1963)

    Article  Google Scholar 

  33. M. Sommerfeld, Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. Int. J. Multiphase Flow 27, 1829–1858 (2001)

    Article  MATH  Google Scholar 

  34. M. Sommerfeld, B. von Wachem, R. Oliemans, Best practice guidelines for computational fluid dynamics of dispersed multiphase flows, in SIAMUF, Swedish Industrial Association for Multiphase Flows, ERCOFTAC, 2008. ISBN 978-91-633-3564-8

    Google Scholar 

Download references

Acknowledgements

The time-consuming computations were carried out on the national supercomputer Cray XE6 (Hermit) at the High Performance Computing Center Stuttgart (grant no.: PARTICLE / pfs 12855), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Breuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Alletto, M., Breuer, M. (2013). Large-Eddy Simulation of the Particle-Laden Turbulent Flow in a Cyclone Separator. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_26

Download citation

Publish with us

Policies and ethics