Skip to main content

Direct Numerical Simulation of Inelastic Non-Newtonian Jet Breakup

  • Conference paper
  • First Online:

Abstract

Direct Numerical Simulations (DNS) based on the Volume of Fluid (VOF) method are carried out in this work, with the aim of analyzing the primary breakup of an inelastic non-Newtonian jet. Detailed description of the jet phenomena is provided firstly, followed by analysis on the generation of ligaments and droplets. The non-Newtonian characteristics of the jet are discussed as well, with a modified Ostwald de Waele model applied for the computation of the shear thinning liquid viscosity. Further, information about the current status of the MPI optimization regarding the Cray XE6 platform is revealed and a first performance analysis is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Bothe, M. Kröger, H.J. Warnecke, A VOF-based conservative method for the simulation of reactive mass transfer from rising bubbles. Fluid Dyn. Mater. Process. 7(3), 303–316 (2011)

    Google Scholar 

  2. C. Clasen, P.M. Phillips, L. Palangetic, J. Vermant, Dispensing of rheologically complex fluids: the map of misery. AIChE J. 58, 3242–3255 (2012)

    Article  Google Scholar 

  3. O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative LES ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227, 8395–8416 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Eggers, E. Villermaux, Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008)

    Article  Google Scholar 

  5. H. Gomaa, N. Roth, J. Schlottke, B. Weigand, DNS calculations for the modeling of real industrial applications. Atomization Sprays 20(4), 281–296 (2010)

    Article  Google Scholar 

  6. M. Gorokhovski, M. Herrmann, Modeling primary atomization. Annu. Rev. Fluid Mech. 40, 343–366 (2008)

    Article  MathSciNet  Google Scholar 

  7. A. Götz, I. Lenhardt, H. Obermaier, Parallele Numerische Verfahren (Springer, Berlin, 2002)

    Google Scholar 

  8. F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  MATH  Google Scholar 

  9. M. Hase, B. Weigand, A numerical model for 3D transient evaporation processes based on the Volume-of- Fluid method, in ICHMT International Symposium on Advances in Computational Heat Transfer, Norway (2004), pp. 1–23

    Google Scholar 

  10. M. Hase, M. Rieber, F. Graf, N. Roth, B. Weigand, Parallel computation of the time dependent velocity evolution for strongly deformed droplets, in High-Performance Computing in Science and Engineering (Springer, Berlin, 2001), pp. 1–10

    Google Scholar 

  11. C. Huber, H. Gomaa, B. Weigand, Application of a novel turbulence generator to multiphase flow computations, in HLRS, High Performance Computing in Science & Engineering (Springer, Berlin, 2010), pp. 1–15

    Google Scholar 

  12. N. Kornev, E. Hassel, Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions. Commun. Numer. Methods Eng. 23(1), 35–43 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. N. Kornev, E. Hassel, Synthesis of homogeneous anisotropic divergence-free turbulent fields with prescribed second-order statistics by vortex dipoles. Phys. Fluids 19(6), 068101 (2007)

    Google Scholar 

  14. P. Marmottant, E. Villermaux, On spray formation. J. Fluid Mech. 498, 73–111 (2004)

    Article  MATH  Google Scholar 

  15. Y. Pan, K. Suga, A numerical study on the breakup on the breakup process of laminar liquid jets into a gas. Phys. Fluids 18, 052101 (2006)

    Article  Google Scholar 

  16. M. Rieber, A. Frohn, A numerical study on the mechanism of splashing. Int. J. Heat Fluid Flow 20(5), 455–461 (1999)

    Article  Google Scholar 

  17. K.A. Sallam, Z. Dai, G.M. Faeth, Liquid breakup at the surface of turbulent round liquid jets in still gases. Int. J. Multiphase Flow 28, 427–449 (2002)

    Article  MATH  Google Scholar 

  18. J. Schlottke, Direkte Numersiche Simulation von Mehrphasenströmumgen mit Phasenübergang, Ph.D. Thesis, Universität Stuttgart, 2010

    Google Scholar 

  19. J. Schlottke, P. Rauschenberger, B. Weigand, C. Ma, D. Bothe, Volume of fluid direct numerical simulation of heat and mass transfer using sharp temperature and concentration fields, in ILASS—Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, 2011

    Google Scholar 

  20. J. Schlottke, B. Weigand, Direct numerical simulation of evaporating droplets. J. Comput. Phys. 227(10), 5215–5237 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Shinjo, A. Umemura, Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Int. J. Multiphase Flow 36, 513–532 (2010)

    Article  Google Scholar 

  22. O. Tatebe, The multigrid preconditioned conjugate gradient method, in 6th Copper Mountain Conference on Multigrid Methods, Copper Mountain, April 1993

    Google Scholar 

  23. H. Weking, J. Schlottke, M. Boger, C.D. Munz, B. Weigand, DNS of rising bubbles using VOF and balanced force surface tension, in High Performance Computing on Vector Systems (Springer, Berlin, 2010)

    Google Scholar 

  24. P. Wesseling, An Introduction to Multigrid Methods (Wiley, Chichester, 1991)

    Google Scholar 

  25. P. Wu, R. Miranda, G. Faeth, Effect of initial inflow conditions on primary break-up of nonturbulent and turbulent jets. Atomization Sprays 5, 175–196 (1995)

    Google Scholar 

Download references

Acknowledgements

The authors greatly thanks the High Performance Computing Center Stuttgart (HLRS) for support and supply of computational time on the NEC SX-9 and Cray XE6 platforms under the Grant No. FS3D/11142. The authors also greatly appreciate financial support of this project from DFG within the priority program SPP 1423 “Prozess Spray”, as well as the financial support from the China Scholarship Council (CSC), as well as from the SFB Transregio 75 and the DFG Cluster of Excellence Simulation Technologies at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxiang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, C., Ertl, M., Meister, C., Rauschenberger, P., Birkefeld, A., Weigand, B. (2013). Direct Numerical Simulation of Inelastic Non-Newtonian Jet Breakup. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_22

Download citation

Publish with us

Policies and ethics