Skip to main content

Phase Separation of Colloid Polymer Mixtures Under Confinement

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13
  • 1507 Accesses

Abstract

Colloid polymer mixtures exhibit vapor-liquid like and liquid-solid like phase transitions in bulk suspensions, and are well-suited model systems to explore confinement effects on these phase transitions. Static aspects of these phenomena are studied by large-scale Monte Carlo simulations, including novel “ensemble switch” methods to estimate excess free energies due to confining walls. The kinetics of phase separation is investigated by a Molecular Dynamics method, where hydrodynamic effects due to the solvent are included via the multiparticle collision dynamics method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958)

    Article  Google Scholar 

  2. S.M. Ilett, A. Orrock, W.C.K. Poon, P.N. Pusey, Phys. Rev. E 51, 1344 (1995)

    Article  Google Scholar 

  3. W.C.K. Poon, J. Phys. Condens. Matter 14, R859 (2002)

    Article  Google Scholar 

  4. E.A.G. Jamie, G.J. Davies, M.D. Howe, R.P.A. Dullens, D.G.A.L. Aarts, J. Phys. Condens. Matter 20, 494231 (2008)

    Article  Google Scholar 

  5. E.A.G. Jamie, R.P.A. Dullens, D.G.A.L. Aarts, J. Chem. Phys. 137, 204902 (2012)

    Article  Google Scholar 

  6. K. Binder, J. Horbach, R. Vink, A. De Virgiliis, Soft Matter 4, 1555 (2008)

    Article  Google Scholar 

  7. K. Binder, P. Virnau, D. Wilms, A. Winkler, Eur. Phys. J. Spec. Top. 197, 227 (2011)

    Article  Google Scholar 

  8. D. Wilms, A. Winkler, P. Virnau, K. Binder, Phys. Rev. Lett. 105, 45701 (2010)

    Article  Google Scholar 

  9. A. Statt, A. Winkler, P. Virnau, K. Binder, J. Phys. Condens. Matter 24, 464122 (2012)

    Article  Google Scholar 

  10. A. Winkler, P. Virnau, K. Binder, R.G. Winkler, G. Gompper, J. Chem. Phys. 138, 054901 (2013)

    Article  Google Scholar 

  11. A. Winkler, P. Virnau, K. Binder, R.G. Winkler, G. Gompper, Europhys. Lett. 100, 16003 (2012)

    Article  Google Scholar 

  12. A. Winkler, A. Statt, P. Virnau, K. Binder, Phys. Rev. E 87(Article ID 032307) (2013)

    Google Scholar 

  13. J. Zausch, P. Virnau, K. Binder, J. Horbach, R.L.C. Vink, J. Chem. Phys. 130, 064906 (2009)

    Article  Google Scholar 

  14. M. Müller, P. Virnau, J. Chem. Phys. 120, 10925 (2004)

    Article  Google Scholar 

  15. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  Google Scholar 

  16. A. Winkler, P. Virnau, K. Binder, in High-Performance Computing in Science and Engineering ’12, ed. by W.E. Nagel et al. (Springer, Berlin, 2013), pp. 29–38

    Google Scholar 

  17. G. Sutmann, R.G. Winkler, G. Gompper, Simulating hydrodynamics of complex fluids: multi-particle collision dynamics coupled to molecular dynamics on massively parallel computers. doi:10.1016/j.cpc.2013.10.004

    Google Scholar 

  18. K. Binder, B.J. Block, P. Virnau, A. Tröster, Am. J. Phys. 80, 1099 (2012)

    Article  Google Scholar 

  19. D. Deb, A. Winkler, P. Virnau, K. Binder, J. Chem. Phys. 136, 134710 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) under projects TR6/A5 and SPP 1296 VI 237/4-3. We are grateful to the NIC Jülich where exploratory runs, mainly relating to static aspects, were made on the JUROPA supercomputer of the Jülich Supercomputer Centre. The simulations on the kinetics of phase separation were carried out at HERMIT (HLRS). Helpful interactions with G. Gompper, R.G. Winkler, C. Huang and G. Sutmann are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Binder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Statt, A., Winkler, A., Virnau, P., Binder, K. (2013). Phase Separation of Colloid Polymer Mixtures Under Confinement. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_2

Download citation

Publish with us

Policies and ethics