Skip to main content

Efficient Calculation of Multi-dimensional Potential Energy Surfaces of Molecules and Molecular Clusters

  • Conference paper
  • First Online:

Abstract

Highly accurate multi-dimensional potential energy surfaces have been computed in a fully automated fashion using newly implemented grid computing capabilities, which allow for the use of an unlimited number of cores. This new feature, which has been interfaced to our potential energy surface generator, allows for the accurate investigation of molecular systems, which are significantly larger than reported in the recent literature. Multi-dimensional potential energy surfaces at the coupled-cluster level were generated for systems of up to 16 atoms, which were used to compute accurate anharmonic vibrational spectra, which can directly be compared with experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Sparta, D. Toffoli, O. Christiansen, Theor. Chem. Acc. 123, 413–429 (2009)

    Article  Google Scholar 

  2. F. Richter, P. Carbonniere, A. Dargelos, C. Pouchan, J. Chem. Phys. 136, 224105 (2012)

    Article  Google Scholar 

  3. G. Rauhut, J. Chem. Phys. 121, 9313 (2004)

    Article  Google Scholar 

  4. T. Hrenar, H.-J. Werner, G. Rauhut, J. Chem. Phys. 126, 134108 (2007)

    Article  Google Scholar 

  5. D. Oschetzki, M. Neff, P. Meier, F. Pfeiffer, G. Rauhut, Croat. Chem. Acta 85, 379–390 (2012)

    Article  Google Scholar 

  6. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, WIREs Comput. Mol. Sci. 2, 242–253 (2012)

    Article  Google Scholar 

  7. N. Currle-Linde, U. Küster, M. Resch, B. Risio, in Parallel Computing: Current & Future Issues of High-End Computing, 2005, p. 49

    Google Scholar 

  8. J.M. Bowman, Acc. Chem. Res. 19, 202 (1986)

    Article  Google Scholar 

  9. R. Gerber, M. Ratner, Adv. Chem. Phys. 70, 97 (1988)

    Google Scholar 

  10. J.K.G. Watson, Mol. Phys. 15, 479 (1968)

    Article  Google Scholar 

  11. G. Rauhut, G. Knizia, H.-J. Werner, J. Chem. Phys. 130, 054105 (2009)

    Article  Google Scholar 

  12. M. Kallay, Ph.D. Thesis, Budapest University of Technology and Economics, 2001

    Google Scholar 

  13. M. Kallay, P. Surjan, J. Chem. Phys. 115, 2945 (2001)

    Article  Google Scholar 

  14. D.E. Woon, T.H. Dunning, J. Chem. Phys. 98, 1358 (1993)

    Article  Google Scholar 

  15. H.-J. Werner, T.B. Adler, F.R. Manby, J. Chem. Phys. 126, 164102 (2007)

    Article  Google Scholar 

  16. G. Knizia, H.-J. Werner, J. Chem. Phys. 128, 154103 (2008)

    Article  Google Scholar 

  17. F.R. Manby, J. Chem. Phys. 119, 4607–4613 (2003)

    Google Scholar 

  18. A.J. May, F.R. Manby, J. Chem. Phys. 121, 4479–4485 (2004)

    Google Scholar 

  19. F. Weigend, A. Köhn, C. Hättig, J. Chem. Phys. 116, 3175 (2002)

    Article  Google Scholar 

  20. F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002)

    Article  Google Scholar 

  21. F.R. Manby, H.-J. Werner, T.B. Adler, A.J. May, J. Chem. Phys. 124, 094103 (2006)

    Article  Google Scholar 

  22. T.B. Adler, G. Knizia, H.-J. Werner, J. Chem. Phys. 127, 221106 (2007)

    Article  Google Scholar 

  23. G. Rauhut, T. Hrenar, Chem. Phys. 346, 160 (2008)

    Article  Google Scholar 

  24. M. Neff, G. Rauhut, J. Chem. Phys. 131, 124129 (2009)

    Article  Google Scholar 

  25. M. Neff, T. Hrenar, D. Oschetzki, G. Rauhut, J. Chem. Phys. 134, 064105 (2011)

    Article  Google Scholar 

  26. G. Rauhut, B. Hartke, J. Chem. Phys. 131, 014108 (2009)

    Article  Google Scholar 

  27. M. Neff, G. Rauhut, Spectrochim. Acta A, http://dx.doi.org/10.1016/j.saa.2013.02.033

  28. T. Rajamäki, A. Miani, L. Halonen, J. Chem. Phys. 118, 6358 (2003)

    Article  Google Scholar 

  29. T. Rajamäki, M. Kallay, J. Noga, P. Valiron, L. Halonen, Mol. Phys. 123, 134308 (2005)

    Google Scholar 

  30. K. Doll, J.C. Schoen, M. Jansen, J. Chem. Phys. 133, 024107 (2010)

    Article  Google Scholar 

  31. M. Araki, H. Ozeki, S. Saito, J. Chem. Phys. 109, 5707 (1998)

    Article  Google Scholar 

  32. H. Petek, D.J. Nesbitt, J.C. Owrutsky, C.S. Gudeman, X. Yang, D.O. Harris, C.B. Moore, R.J. Saykally, J. Chem. Phys. 92 3257 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guntram Rauhut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Neff, M. et al. (2013). Efficient Calculation of Multi-dimensional Potential Energy Surfaces of Molecules and Molecular Clusters. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_16

Download citation

Publish with us

Policies and ethics