Skip to main content

A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloids

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13

Abstract

A mesoscopic colloid model is developed in which a spherical colloid is represented by many interacting sites on its surface. The hydrodynamic interactions with thermal fluctuations are taken accounts in full using Dissipative Particle Dynamics, and the electrostatic interactions are simulated using Particle–Particle–Particle Mesh method. This new model is applied to investigate the electrophoretic mobility of a charged colloid under an external electric field, and the influence of salt concentration and colloid charge are systematically studied. The simulation results show good agreement with predictions from the electrokinetic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://reghanhill.research.mcgill.ca/research/mpek.html.

References

  1. W.B. Russel, D.A. Saville, W. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  2. J. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996)

    Google Scholar 

  3. P. Ahlrichs, B. Dünweg, J. Chem. Phys. 111, 8225 (1999)

    Article  Google Scholar 

  4. K. Grass, U. Böhme, U. Scheler, H. Cottet, C. Holm, Phys. Rev. Lett. 100, 096104 (2008)

    Article  Google Scholar 

  5. K. Grass, C. Holm, Soft Matter 5, 2079 (2009)

    Article  Google Scholar 

  6. K. Grass, C. Holm, Faraday Discuss. 144, 57 (2010)

    Article  Google Scholar 

  7. V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)

    Article  Google Scholar 

  8. V. Lobaskin, B. Dünweg, C. Holm, J. Phys. Condens. Matter 16, S4063 (2004)

    Article  Google Scholar 

  9. V. Lobaskin, B. Dünweg, M. Medebach, T. Palberg, C. Holm, Phys. Rev. Lett. 98, 176105 (2007)

    Article  Google Scholar 

  10. A. Chatterji, J. Horbach, J. Chem. Phys. 122, 184903 (2005)

    Article  Google Scholar 

  11. A. Chatterji, J. Horbach, J. Chem. Phys. 126, 064907 (2007)

    Article  Google Scholar 

  12. G. Giupponi, I. Pagonabarraga, Phys. Rev. Lett. 106, 248304 (2011)

    Article  Google Scholar 

  13. H. Tanaka, T. Araki, Phys. Rev. Lett. 85, 1338 (2000)

    Article  Google Scholar 

  14. Y. Nakayama, R. Yamamoto, Phys. Rev. E 71, 036707 (2005)

    Article  Google Scholar 

  15. K. Kim, Y. Nakayama, R. Yamamoto, Phys. Rev. Lett. 96, 208302 (2006)

    Article  Google Scholar 

  16. Y. Nakayama, K. Kim, R. Yamamoto, Eur. Phys. J. E 26, 361 (2008)

    Article  Google Scholar 

  17. A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)

    Article  Google Scholar 

  18. G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)

    Google Scholar 

  19. P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)

    Article  Google Scholar 

  20. J.M.V.A. Koelman, P.J. Hoogerbrugge, Europhys. Lett. 21, 363 (1993)

    Article  Google Scholar 

  21. P. Español, P.B. Warren, Europhys. Lett. 30, 191 (1995)

    Article  Google Scholar 

  22. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)

    Article  Google Scholar 

  23. J. Smiatek, M. Sega, C. Holm, U.D. Schiller, F. Schmid, J. Chem. Phys. 130, 244702 (2009)

    Article  Google Scholar 

  24. H. Limbach, A. Arnold, B. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006)

    Article  Google Scholar 

  25. J. Smiatek, M. Allen, F. Schmid, Eur. Phys. J. E 26, 115 (2008)

    Article  Google Scholar 

  26. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)

    Article  Google Scholar 

  27. R. Hockney, J. Eastwood, Computer Simulation Using Particles (Adam Hilger, Bristol, 1988)

    Book  MATH  Google Scholar 

  28. M. Deserno, C. Holm, J. Chem. Phys. 109, 7678 (1998)

    Article  Google Scholar 

  29. M. Deserno, C. Holm, J. Chem. Phys. 109, 7694 (1998)

    Article  Google Scholar 

  30. M.R. Wright, An Introduction to Aqueous Electrolyte Solutions (Wiley, Chichester, 2007)

    Google Scholar 

  31. G. Subramanian, H. Davis, Phys. Rev. A 11, 1430 (1975)

    Article  Google Scholar 

  32. J. Hynes, Annu. Rev. Phys. Chem. 28, 301 (1977)

    Article  Google Scholar 

  33. J.T. Padding, A. Wysocki, H. Löwen, A.A. Louis, J. Phys. Condens. Matter 17, S3393 (2005)

    Article  Google Scholar 

  34. J.K. Whitmer, E. Luijten, J. Phys. Condens. Matter 22, 104106 (2010)

    Article  Google Scholar 

  35. B.J. Alder, T.E. Wainwright, Phys. Rev. A 1, 18 (1970)

    Article  Google Scholar 

  36. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edn. (Academic, London, 2006)

    Google Scholar 

  37. H. Hasimoto, J. Fluid Mech. 5, 317 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Bocquet, J.L. Barrat, Soft Matter 3, 685 (2007)

    Article  Google Scholar 

  39. O.I. Vinogradova, A.V. Belyaev, J. Phys. Condens. Matter 23, 184104 (2011)

    Article  Google Scholar 

  40. J.W. Swan, A.S. Khair, J. Fluid Mech. 606, 115 (2008)

    MATH  MathSciNet  Google Scholar 

  41. A.S. Khair, T.M. Squires, Phys. Fluids 21, 042001 (2009)

    Article  Google Scholar 

  42. R.W. O’Brien, L.R. White, J. Chem. Soc. Faraday Trans. 2 74, 1607 (1978)

    Google Scholar 

  43. R.J. Hill, D.A. Saville, W.B. Russel, J. Colloid Interface Sci. 258, 56 (2003)

    Article  Google Scholar 

  44. E. Hückel, Phys. Z. 25, 204 (1924)

    Google Scholar 

  45. M.v. Smoluchowski, Z. Phys. Chem. 92, 129 (1917)

    Google Scholar 

  46. A.L. Loeb, J.T.G. Overbeek, P.H. Wiersema, The Electrical Double Layer Around a Spherical Colloid Particle (MIT, Massachusetts, 1961)

    Google Scholar 

  47. H. Ohshima, T. Healy, L. White, J. Colloid Interface Sci. 90, 17 (1982)

    Article  Google Scholar 

  48. H. Ohshima, Theory of Colloid and Interfacial Electric Phenomena (Academic, Amsterdam, 2006)

    Google Scholar 

  49. J. López-García, M. Aranda-Rascón, J. Horno, J. Colloid Interface Sci. 316, 196 (2007)

    Article  Google Scholar 

  50. J. López-García, M. Aranda-Rascón, J. Horno, J. Colloid Interface Sci. 323, 146 (2008)

    Article  Google Scholar 

  51. J. Zhou, F. Schmid, J. Phys. Condens. Matter 24, 464112 (2012)

    Article  Google Scholar 

  52. J. Zhou, F. Schmid, Eur. Phys. J. E 36, 33 (2013)

    Article  Google Scholar 

  53. J. Zhou, R. Schmitz, B. Dünweg, F. Schmid, J. Chem. Phys. 139, 024901 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Reghan Hill for providing the computer program MPEK. We thank the HLRS Stuttgart for a generous grant of computer time on HERMIT. This work is funded by the Deutsche Forschungsgemeinschaft (DFG) through the SFB-TR6 program “Physics of Colloidal Dispersions in External Fields”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, J., Schmid, F. (2013). A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloids. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_1

Download citation

Publish with us

Policies and ethics