Skip to main content

Computing over Unreliable Communication Networks

  • Chapter
Information and Control in Networks

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 450))

Abstract

In this chapter, we take the unifying view of systems interacting over communication networks as distributed computing systems and propose to study them as networked control systems. Since averaging is central operation to much science and engineering, we first consider the problem of distributed averaging over unreliable networks. We point out that a popular and well-behaved algorithm can instead generate a collective global complex behavior when the inter-agent communication happens over unreliable links. To mitigate the effects of the unreliable information exchange, we propose a new distributed averaging algorithm robust to noise and intermittent communication. The algorithm and the control perspective are the basis for the development of new distributed optimization systems that we can analyze and design as networked control systems. In particular, we apply a newly developed networked controller design method to design an improved ad-hoc networked distributed least square algorithm. The approach applies to multi-agent cooperative applications and opens up several directions of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that having \(D_{i}^{\eta u}=0\), and \(D_{i}^{\eta\nu} = 0 \; \forall i\) assures that the feedback interconnection of P and N is well-posed.

  2. 2.

    More general dynamical models can be studied [12].

  3. 3.

    Note that the input and output partitions of the controller have to match the output and input partitions of the interconnected plant, while the state partition is not fixed.

References

  1. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Krieger, Malabar (1992)

    Google Scholar 

  2. Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford (1958)

    Google Scholar 

  3. Baillieul, J.: Feedback coding for information-based control: operating near the data-rate limit. In: Proceedings of the 2002 IEEE Conference on Decision and Control, Las Vegas, NV, pp. 3229–3236 (2002)

    Chapter  Google Scholar 

  4. Bartumeus, F., Daluz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)

    Article  Google Scholar 

  5. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice Hall, New York (1989)

    MATH  Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  7. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)

    Article  Google Scholar 

  8. Costa, O.L.V., Fragoso, M.D.: Stability results for discrete-time linear systems with Markovian jumping parameters. J. Math. Anal. Appl. 179, 154–178 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Springer, Berlin (2005)

    MATH  Google Scholar 

  10. Coviello, L., Minero, P., Franceschetti, M.: Stabilization over Markov feedback channels: the general case. IEEE Trans. Autom. Control. (2012). doi:10.1109/TAC.2012.2212616

    Google Scholar 

  11. Debb, S., Srikant, R.: Global stability of congestion controllers for the Internet. IEEE Trans. Autom. Control 48(6) (2003)

    Google Scholar 

  12. Elia, N.: Remote stabilization over fading channels. In: Systems and Control Letters, vol. 54, pp. 237–249 (2005)

    Google Scholar 

  13. Elia, N., Eisenbeis, J.N.: Limitations of linear control over packet drop networks. IEEE Trans. Autom. Control 56(4), 826–841 (2011)

    Article  MathSciNet  Google Scholar 

  14. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. In: IEEE Transactions on Automatic Control Special Issue on Networked Control, vol. 49, pp. 1465–1476 (2004)

    Google Scholar 

  15. Feijer, D., Paganini, F.: Stability of primal–dual gradient dynamics and applications to network optimization. Automatica 46(12), 1974–1981 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gupta, V., Hassibi, B., Murray, R.M.: Optimal LQG control across packet-dropping links. Syst. Control Lett. 56(6), 439–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadjicostis, C.N., Turi, R.: Feedback control utilizing packet dropping networks links. In: IEEE CDC (2002)

    Google Scholar 

  18. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Appl. 4, 302–320 (1969)

    Google Scholar 

  19. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  20. Kelly, F.P., Maulloo, A., Tan, D.: Rate control in communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49, 237–252 (1998)

    MATH  Google Scholar 

  21. Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: utility functions, random losses and ECN marks. IEEE/ACM Trans. Netw. 11(5), 689–702 (2003)

    Article  Google Scholar 

  22. Kushner, H.J.: Stochastic Stability and Control. Academic Press, New York (1967)

    MATH  Google Scholar 

  23. Ling, Q., Lemmon, M.: Robust performance of soft real-time networked control systems with data dropouts. In: Proceedings of the 41st IEEE Conference on Decision and Control (2002)

    Google Scholar 

  24. Ling, Q., Lemmon, M.: Optimal dropout compensation in networked control systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control (2003)

    Google Scholar 

  25. Lobel, I., Ozdaglar, A.: Distributed subgradient methods over random networks. Tech. report 2800, MIT LIDS (2008)

    Google Scholar 

  26. Lobel, I., Ozdaglar, A., Feijer, D.: Distributed multi-agent optimization with state-dependent communication. LIDS report 2834 (2010). doi:10.1007/s10107-011-0467-x

  27. Low, S.H., Lapsley, D.E.: Optimal flow control, I: basic algorithm and convergence. IEEE/ACM Trans. Netw. 7(6), 861–874 (1999)

    Article  Google Scholar 

  28. Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)

    Article  Google Scholar 

  29. Mantegna, R., Stanley, H.: Scaling behavior in the dynamics of an economic index. Nature 376, 46–49 (1995)

    Article  Google Scholar 

  30. Martins, N.C., Dahleh, M.A., Elia, N.: Feedback stabilization of uncertain systems in the presence of a direct link. IEEE Trans. Autom. Control 51(3), 438–447 (2006)

    Article  MathSciNet  Google Scholar 

  31. Mercadier, N., Guerin, W., Chevrollier, M., Kaiser, R.: Lévy flights of photons in hot atomic vapours. Nat. Phys. 5, 602–605 (2009)

    Article  Google Scholar 

  32. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)

    Book  MATH  Google Scholar 

  33. Minero, P., Francescetti, M., Day, S., Nair, G.N.: Data rate theorem for stabilization over time-varying feedback channels. Trans. Autom. Control 52(2), 243–255 (2009)

    Article  Google Scholar 

  34. Nair, G.N., Evans, R.J.: Communication-limited stabilization of linear systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 1, pp. 1005–1010 (2000)

    Google Scholar 

  35. Nedic, A., Ozdaglar, A.: Distributed subgradient method for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)

    Article  MathSciNet  Google Scholar 

  36. Nedic, A., Ozdaglar, A., Parrilo, A.P.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)

    Article  MathSciNet  Google Scholar 

  37. Olfati-Saber, R.: Distributed Kalman filtering for sensor networks. In: Proc. of 46th IEEE Conf. on Decision and Control, pp. 5492–5498 (2007)

    Google Scholar 

  38. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  39. Paganini, F.: Global stability result in network flow control. Syst. Control Lett. 46(3), 153–163 (2002)

    Article  MathSciNet  Google Scholar 

  40. Ram, S.S., Nedic, A., Veeravalli, V.V.: ‘Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. (2010). doi:10.1007/s10957-010-9737-7

    MathSciNet  Google Scholar 

  41. Reynolds, A.M., Smith, A.D., Menzel, R., Greggers, U., Reynolds, D.R., Riley, J.R.: Displaced honey bees perform optimal scale-free search flights. Ecology 88(8), 1955–1961 (2007)

    Article  Google Scholar 

  42. Rotkowitz, M., Lall, S.: A characterization of convex problems in decentralized control. IEEE Trans. Autom. Control 51(2), 1984–1996 (2006)

    Article  MathSciNet  Google Scholar 

  43. Sahai, A.: Anytime information theory. Ph.D. thesis M.I.T. (Feb. 2001)

    Google Scholar 

  44. Sahai, A., Mitter, S.K.: The necessity and sufficiency of anytime capacity for control over a noisy communication link. Part I: scalar systems. IEEE Trans. Inf. Theory 52(8), 3369–3395 (2006)

    Article  MathSciNet  Google Scholar 

  45. Schenato, S., Poolla, F., Sastry, J.: Kalman filtering with intermittent observations. In: Proceedings of the 42nd IEEE Conference on Decision and Control (2003)

    Google Scholar 

  46. Seiler, P., Sengupta, R.: Analysis of communication losses in vehicle control problems. In: Proceedings of IEEE ACC, pp. 1491–1496 (2001)

    Google Scholar 

  47. Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Dynamic consensus on mobile networks, presented at the 16th IFAC World Congr., Prague, Czech Republic, July 2005

    Google Scholar 

  48. Tatikonda, S., Mitter, S.K.: Control under communication constraints. IEEE Trans. Autom. Control 49(7), 1056–1068 (2004)

    Article  MathSciNet  Google Scholar 

  49. Tsitsiklis, J.N.: Problems in decentralized decision making and computation. Ph.D. thesis, Massachusetts Institute of Technology (1984)

    Google Scholar 

  50. Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vamsi, A.S.M.: Optimal networked controllers for networked plants. Ph.D. thesis, Department of Electrical and Computer Engineering, Iowa State University (Aug. 2012)

    Google Scholar 

  52. Vamsi, A.S.M., Elia, N.: Design of distributed controllers realizable over arbitrary directed networks. In: 49th IEEE Conference on Decision and Control, Dec. 2010, pp. 4795–4800 (2010)

    Google Scholar 

  53. Vamsi, A.S.M., Elia, N.: Optimal Distributed Controllers Realizable over Arbitrary Networks. IEEE Trans. Autom. Control. (2011, under review)

    Google Scholar 

  54. Voulgaris, P.G.: A convex characterization of classes of problems in control with specific interaction and communication structures. In: Proceedings of the American Control Conference, pp. 3128–3133 (2001)

    Google Scholar 

  55. Wang, J., Elia, N.: Mean square stability of consensus over fading networks with nonhomogeneous communication delays. In: Proc. IEEE CDC08, pp. 4614–4619 (2008)

    Google Scholar 

  56. Wang, J., Elia, N.: Dynamic average consensus over random networks with additive noise. In: IEEE Conference on Decision and Control, pp. 4789–4794 (2010)

    Google Scholar 

  57. Wang, J., Elia, N.: Control approach to distributed optimization. In: Allerton Conference on Communication, Control and Computing, 29 Sep.–1 Oct. 2010, 557–561 (2010)

    Google Scholar 

  58. Wang, J., Elia, N.: A control perspective to centralized and distributed optimization. Finalist for best student paper award. In: Proc. 50th IEEE CDC-ECC (2011)

    Google Scholar 

  59. Wang, J., Elia, N.: Distributed averaging under constraints on information exchange: emergence of Lévy flights. IEEE Trans. Autom. Control 57(10), 2435–2449 (2012)

    Article  MathSciNet  Google Scholar 

  60. Wang, J., Elia, N.: Distributed least squares with intermittent communications. In: Proc. 2012 American Control Conference, pp. 6479–6484 (2012)

    Google Scholar 

  61. Wang, J., Elia, N.: Distributed averaging algorithms resilient to communication noise and dropouts. IEEE Trans. Signal. Process. (2013). doi:10.1109/TSP.2013.2243438

    Google Scholar 

  62. Wang, J., Elia, N.: Mitigation of complex behavior over networked systems: analysis of spatially invariant structures. Automatica (2013). doi:10.1016/j.automatica.2013.02.042

    Google Scholar 

  63. Wong, W.S., Brockett, R.W.: Systems with finite communication bandwidth constraints. II Stabilization with limited information feedback. IEEE Trans. Autom. Control 44, 1049–1053 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  64. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus. In: Proc. Int. Conf. Information Processing in Sensor Networks, Los Angeles, CA, pp. 63–70 (2005)

    Google Scholar 

  65. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  66. Zhu, M., Martinez, S.: On distributed optimization under inequality and equality constraints via penalty primal–dual methods. In: Proc. of 2010 American Contr. Conf., 30 June–2 July 2010, pp. 2434–2439 (2010)

    Google Scholar 

  67. Zhu, H., Giannakis, G.B., Cano, A.: Distributed in-network channel decoding. IEEE Trans. Signal Process. 57(10), 3970–3983 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been supported by NSF grants ECS-0093950, ECS-0524689 ECS-0901846, ECS-1239319.

This research was supported by LCCC—Linnaeus Grant VR 2007-8646, Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Elia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elia, N., Wang, J., Vamsi, A.S.M. (2014). Computing over Unreliable Communication Networks. In: Como, G., Bernhardsson, B., Rantzer, A. (eds) Information and Control in Networks. Lecture Notes in Control and Information Sciences, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-319-02150-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02150-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02149-2

  • Online ISBN: 978-3-319-02150-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics