We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Dynamics and Synoptic | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Dynamics and Synoptic

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Lectures in Meteorology

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 2370 Accesses

Abstract

In the chapter Dynamics, and Synoptic, the basic laws for describing the kinematic and dynamic behavior of tropospheric flows are presented and discussed. The conservation equations for momentum (Newton’s 2nd law), total mass (equation of continuity), dry air, water substances, trace constituents, and energy (1st principle of thermodynamics) are presented and explained, where inertial frames and moving frames rotating with the Earth are considered. This presentation includes different kinds of coordinate systems. Simplifications like the hydrostatic and geostrophic approximations are related to scaling considerations (scale analysis). Balanced curved flows, streamlines and trajectories are explained as well. Circulation and vorticity principles are discussed to analyze rotational flows. This part includes, for instance, the balance equation for vorticity and the distinction between absolute and relative vorticity. Wave analysis is explained by examples like gravity waves and Rossby waves. Principles of Ekman’s physics of the atmospheric boundary layer (ABL) are presented to point out the effects of turbulent motion. The chapter also encompasses how principles of dynamics and kinetic as well as numerical weather prediction model results are used in weather forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter pre-assumes basic knowledge of calculus. A short review of the fundamental concepts relevant for understanding of this chapter is given in Appendix A.

  2. 2.

    Due to the rotation of the Earth a classroom with its center at the pole turns around once a day. At the equator, a classroom makes a free trip at its distance from the Earth’s center around the rotation axis.

  3. 3.

    Carl-Gustaf Arvid Rossby, Swedish-U.S. meteorologist, 1898–1957. He was the first to explain the large-scale motions of the atmosphere in terms of fluid mechanics.

  4. 4.

    Hans Ertel, German natural scientist and pioneer in geophysics, meteorology and hydrodynamics, 1904–1971.

  5. 5.

    The inertial system is a coordinate system realized by coordinates that are fixed in space.

  6. 6.

    \(\varOmega = \frac{2\pi } {\mathit{siderianday}} = \frac{2\pi } {86,164\,\mathrm{s}} = 7.292 \cdot 10^{-5}\) s−1. Note that a sidereal (or star) day has 23 h, 56 min and 4.09 s. The rotational velocity of the Earth with respect to a fixed point in the space is slightly shorter than a day (24 h).

  7. 7.

    The triple vector product of three vectors, a, b, and c is given by \(\mathbf{a} \times \left (\mathbf{b} \times \mathbf{c}\right ) = \left (\mathbf{a} \cdot \mathbf{c}\right )\mathbf{b} -\left (\mathbf{a} \cdot \mathbf{b}\right )\mathbf{c}\). Furthermore, \(\boldsymbol{\varOmega }\) is spatially constant, \(\nabla \cdot \mathbf{r} = 3\) and \(\nabla \mathbf{r} = \mathbf{E}\), where E is the identity tensor.

  8. 8.

    In meteorology, the x-direction of the coordinate system is defined positive from west to east, the y-direction points from the south to the north and the z-direction is directed upwards positive. Winds from west/south have a positive sign while winds coming from east/north have a negative sign.

  9. 9.

    This phenomenon often occurs in jet streams.

  10. 10.

    The gravitational constant was first determined by Cavendish in 1798.

  11. 11.

    There are four fictitious forces, rectilinear acceleration, centrifugal force, Coriolis force, and the Euler force.

  12. 12.

    Jean le Rond d’Alembert, French mathematician, mechanician, physicist and philosopher, 1717–1783.

  13. 13.

    To visualize the curved path on a rotating surface, try to draw a straight line on a piece of paper while a classmate rotates it slightly.

  14. 14.

    In meteorology, the basic equations are written commonly without explicitly writing the mass. The density of air is close to 1 kg m−3 in the lower atmosphere. Using a unit volume of 1 m3 leads to the unit mass of air being approximately 1 kg.

  15. 15.

    General circulation models (GCMs) and NWP models usually base on the Euler equation and re-introduce the friction at the atmosphere-surface interface and in the atmospheric boundary layer indirectly by parameterizations.

  16. 16.

    Examples of analytical solutions can be found in textbooks on atmospheric dynamics or numerical modeling. These solutions are used to test numerical models during their development phase.

  17. 17.

    Advection is the horizontal movement of air.

  18. 18.

    Christophorus Henricus Diedericus Buys Ballot, Dutch chemist and meteorologist, 1817–1890.

  19. 19.

    Rearranging for v and inserting in \(\frac{dv} {dt} = -fu -\frac{uv} {r}\) provides \(\begin{array}{l} \quad -\frac{1} {\rho } \frac{\partial p} {\partial r} + \frac{fm} {r} -\frac{f^{2}r} {2} + (\frac{m^{2}} {r^{2}} -\frac{2mf} {2} + \frac{f^{2}r^{2}} {4} )/r \\ = -\frac{1} {\rho } \frac{\partial p} {\partial r} + \frac{fm} {r} - 2\frac{f^{2}r} {4} + \frac{m^{2}} {r^{3}} -\frac{mf} {r} + \frac{f^{2}r} {4} \\ = -\frac{1} {\rho } \frac{\partial p} {\partial r} -\frac{f^{2}r} {4} + \frac{m^{2}} {r^{3}}\\ \end{array}\)

  20. 20.

    \( \begin{array}{lll} \frac{dm} {dt} = r\frac{dv} {dt} + v\frac{dr} {dt} + \frac{f2r} {2} \frac{dr} {dt} \\ = r\frac{dv} {dt} + (v + fr)\frac{dr} {dt} \\ = r(-fu -\frac{uv} {r} ) + (v + fr)\frac{dr} {dt} \\ = -fru - uv + uv + fru = 0 \end{array} \)

  21. 21.

    Here numbers are used to address the different phase of water and dry air as often done in theoretical meteorology to reduce the writing burden.

  22. 22.

    Herein it is assumed that moist air can be considered as an ideal gas. In the nomenclature introduced above, the computed gas constant for the gas mixture dry air, R d , is denoted to as R 0, ρ is the density of air, and T v  = T(1 + 0. 61q 1) is the virtual temperature, and Θ is the potential temperature using the nomenclature of theoretical meteorology and ABL physics (Chap. 2).

  23. 23.

    The unit vectors in Cartesian (i, j, k) and spherical coordinates (i λ , j ϕ , k r ) differ. Only tensors of same rank, and tensors and vectors belonging to the same coordinate systems can be added.

  24. 24.

    Osborne Reynolds, British physicist, 1842–1912.

  25. 25.

    Joseph Valentin Boussinesq, French mathematician and physicist, 1842–1929.

  26. 26.

    Osborne Reynolds, British mathematician and engineer, 1842–1912.

  27. 27.

    For low Rossby numbers we can extend the Boussinesq approximation to large vertical scales of motion when we use modified pressure and potential density.

  28. 28.

    Sound waves may not be ignored in meteorological models that aim at investigation of noise annoyance.

  29. 29.

    Ernst Heinrich Wilhelm Schmidt, German engineer, 1892–1975.

  30. 30.

    Jean Baptiste Joseph Fourier, French mathematician and physicist, 1768–1830.

  31. 31.

    Adolf Eugen Fick, German physician, 1829–1901.

  32. 32.

    Fritz Herbert, German meteorologist, born 1944.

  33. 33.

    Lars Onsager, Norwegian-American physical chemist, 1903–1976.

  34. 34.

    Pierre Curie, French physicist, 1859–1906.

  35. 35.

    Ilya Romanovich Prigogine, Belgian physical chemist, 1917–2003.

  36. 36.

    Julius C. Rotta, German engineer, 1912–2005.

  37. 37.

    Warren Kendall Lewis, American chemical engineer, 1882–1975.

  38. 38.

    Andrey Nikolaevich Kolmogorov, Russian mathematician, 1903–1984.

  39. 39.

    Alexander Mikhailovich Obukhov, Russian physicist, 1918–1989.

  40. 40.

    Werner Karl Heisenberg, German physicist, 1901–1976.

  41. 41.

    Carl Friedrich von Weizsäcker, German physicist, 1912–2007.

  42. 42.

    Vagn Walfrid Ekman, Swedish oceanographer, 1874–1954.

  43. 43.

    Ludwig Prandtl, German aeronautical engineer, 1875–1953.

  44. 44.

    Originally Ekman derived this relationship for the ocean by using the kinematic viscosity of water instead of the eddy diffusivity for momentum. Ekman also adduced some arguments in favor of using his results to describe the variation of wind speed with height over land. Later, independently of each other, Akerblom in 1908 and Exner in 1912 realized Ekman’s idea. Exner was the first who combined both the planetary boundary layers of the ocean, and the atmosphere in a single dynamic system.

  45. 45.

    Heinz Helmut Lettau, German-American meteorologist, 1909–2005.

  46. 46.

    Alfred K. Blackadar, American meteorologist, born 1920.

  47. 47.

    Jule Gregory Charney, Swedish-American meteorologist, 1917–1981.

  48. 48.

    Arnt Eliassen, Norwegian meteorologist, 1915–2000.

  49. 49.

    Andrei Sergeevich Monin, Russian physicist, 1921–2007.

  50. 50.

    Charles Henry Brian Priestley, British meteorologist, 1915–1998.

  51. 51.

    Grigory Isaakovich Barenblatt, Russian mathematician, born 1927.

  52. 52.

    This procedure was developed by Fritz Herbert (1980, Vorlesung zur Physik der planetarischen Grenzschicht. J.W. Goethe-Universität, Frankfurt/Main, unpublished manuscript). It has been described by Kramm and Herbert (2006b, 2009).

  53. 53.

    Edgar Buckingham, American physicist, 1867–1940.

  54. 54.

    Gabriel Cramer, Swiss mathematician, 1704–1752.

  55. 55.

    Sir Geoffrey Ingram Taylor, British physicist, 1886–1975.

  56. 56.

    This means that replacing Q 1 = zd in the similarity hypothesis by \(Q_{1} =\varLambda _{P} =\kappa \; \left (z - d\right )\) would provide the same result.

  57. 57.

    Sergej S. Zilitinkevich, Russian-Swedish hydrometeorologist, born 1936.

  58. 58.

    The Businger-Dyer-Pandolfo relationship was later experimentally determined by Dyer and Hicks, Businger et al. and others, where their results mainly cover the stability range − 2 ≤ ζ < 0.

  59. 59.

    O’KEYPS stands for the initials of various authors who proposed this formula (Obukhov, Kazansky and Monin, Ellison, Yamamoto, Panofsky, and Sellers).

  60. 60.

    Hans A. Panofsky, German-American meteorologist, 1917–1988.

  61. 61.

    John A. Dutton, American meteorologist.

  62. 62.

    John L. Lumley, American mechanical and aerospace engineer, born 1930.

  63. 63.

    James W. Deardorff, American meteorologist, born 1928.

  64. 64.

    Dispersion and dissipation are physically different processes. In a dynamical system, dissipation denotes the concept where important mechanisms (e.g. waves, oscillations) lose energy with time because of friction, radiative cooling or turbulence. Energy is converted to heat for which the temperature of the system increases. When a wave loses amplitude, it dissipates.

  65. 65.

    Be aware that in principle, zero pressure perturbation contradicts to non-zero buoyancy when mass is conserved.

  66. 66.

    Hermann Ludwig Ferdinand von Helmholtz, German physician and physicist, 1821–1894.

  67. 67.

    Vilhelm Friman Koren Bjerknes, Norwegian physicist and meteorologist, founder of the modern practice of weather forecasting, 1862–1951.

  68. 68.

    Max Margules, Austrian mathematician, physicist, and chemist, 1856–1920.

  69. 69.

    Sometimes UTC is abbreviated as UT.

  70. 70.

    The same universal time is needed so that weather maps can be drawn.

  71. 71.

    Material, concepts, ideas and problems of the following books and articles inspired this chapter. These sources are recommended for further reading.

References

Material, concepts, ideas and problems of the following books and articles inspired this chapter. These sources are recommended for further reading.

  • Akerblom, F (1908) Recherches sur les courants les plus bas de l’atmosphere au-dessus de Paris. Nova Acta Regiae Soc Scient Upsalensis Ser 4, 2:1–45

    Google Scholar 

  • Andreas EL, Hicks BB (2002) Comments on “Critical test of the validity of Monin-Obukhov similarity during convective conditions”. J Atmos Sci 59:2605–2607

    Google Scholar 

  • Andrews DG (2000) Introduction to atmospheric physics. Cambridge University Press, New York, 237pp

    Google Scholar 

  • Barenblatt GI (1979) Similarity, self-similarity, and intermediate asymptotics. Consultants Bureau, New York/London, 218pp

    Google Scholar 

  • Barenblatt GI (1994) Scaling phenomena in fluid mechanics. Inaugural lecture delivered before the University of Cambridge, 3 May 1993. Cambridge University Press, Cambridge, 45pp

    Google Scholar 

  • Barenblatt GI (1996) Similarity, self-similarity, and intermediate asymptotics. Cambridge University Press, Cambridge, 386pp

    Google Scholar 

  • Barenblatt GI (2003) Scaling. Cambridge University Press, Cambridge, 171pp

    Google Scholar 

  • Barenblatt GI, Monin AS (1976) Similarity laws for stratified turbulent shear flows. Report of the fourth all-union Congress on theoretical and applied mechanics 41, Naukova, Dumka, Kiev

    Google Scholar 

  • Barenblatt GI, Monin AS (1979) Similarity laws for stratified turbulent shear flows. Arch Ration Mech Anal 70:307–317

    Google Scholar 

  • Bernhardt K (1995) Zur Interpretation der Monin-Obuchovschen Länge. Meteorol Z NF 4:81–82

    Google Scholar 

  • Bernhardt K (1998) “Spin down” versus “Fill in” – zur Abschätzung des Effektes reibungsbedingter Sekundärzirkulationen. Annalen der Meteorologie 37:401

    Google Scholar 

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67:3095–3102

    Google Scholar 

  • Bluestein HB (1992) Synoptic-dynamic meteorology in midlatitudes, vol. I, Oxford University Press, New York, 431pp

    Google Scholar 

  • Brown RA (1991) Fluid mechanics of the atmosphere. Academic, San Diego, 489pp

    Google Scholar 

  • Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4:345–376

    Google Scholar 

  • Busch NE (1973) On the mechanics of atmospheric turbulence. In: Haugen DA (ed) Workshop on micrometeorology, Boston. American Meteorological Society, Boston, pp 1–65

    Google Scholar 

  • Businger JA (1966) Transfer of momentum and heat in the planetary boundary layer. In: Proceedings of the symposium on Arctic heat budget and atmospheric circulation, Lake Arrowhead. The Rand Corporation, pp 305–332

    Google Scholar 

  • Businger JA (1973) Turbulent transfer in the atmospheric surface layer. In: Haugen DA (ed) Workshop on micrometeorology, Boston. American Meteorological Society, Boston, pp 67–100

    Google Scholar 

  • Businger JA (1986) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Appl Meteorol 25:1100–1124

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Google Scholar 

  • Carl DM, Tarbell TC, Panofsky HA (1973) Profiles of wind and temperature from towers over homogeneous terrain. J Atmos Sci 30:788–794

    Google Scholar 

  • Carlson TN (1998) Mid-latitude weather systems. Braun-Brumfield/A Sheridan Group. American Meteorological Society, Boston, 508pp

    Google Scholar 

  • Carson DJ, Smith FB (1973) The Leipzig wind profile and the boundary layer wind-stress relationship. Q J R Meteorol Soc 99:171–177

    Google Scholar 

  • Chalikov DV (1968) O profilja vetra i temperatury v prizemnom sloe atmosfery pri ustojcivoj stratifikacii. Trudy GGO 207:170–173

    Google Scholar 

  • Charney JG, Eliassen A (1949) A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus 1:38–54

    Google Scholar 

  • Cheng Y, Brutsaert W (2005) Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound-Layer Meteorol 114:519–538

    Google Scholar 

  • Droppo JG Jr (1985) Concurrent measurements of ozone dry deposition using eddy correlation and profile flux methods. J Geophys Res 90:2111–2118

    Google Scholar 

  • Dutton JA (1995) Dynamics of atmospheric motion. Dover, New York, 617pp

    Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Bound-Layer Meteorol 7:363–372

    Google Scholar 

  • Dyer AJ, Bradley EF (1982) An alternative analysis of flux-gradient relationships at the 1976 ITCE. Bound-Layer Meteorol 22:3–19

    Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721

    Google Scholar 

  • Ekman V (1905) On the influence of the Earth’s rotation on ocean-currents. Ark Mat Astron Fys 2:1–52

    Google Scholar 

  • Eliassen A, Kleinschmidt E Jr (1957) Dynamic meteorology. In: Flügge S (ed) Handbuch der Physik, Bd. XLVIII. Springer, Berlin/Heidelberg/New York, 1–154

    Google Scholar 

  • Ellison TH (1957) Turbulent transport of heat and momentum from an infinite rough plane. J Fluid Mech. 2:456–466

    Google Scholar 

  • Exner FM (1912) Zur Kenntnis der untersten Winde über Land und Wasser und der durch sie erzeugten Meereströmungen. Annalen der Hydrographie und maritimen Meteorologie 40:226–239

    Google Scholar 

  • Fleagle RG, Businger JA (1980) An introduction to atmospheric physics. Academic, New York/London/Toronto/Sydney/San Francisco, 432pp

    Google Scholar 

  • Foken T (2006) 50 years of Monin-Obukhov similarity theory. Bound-Layer Meteorol 119:431–447

    Google Scholar 

  • Foken T (2008) Micrometeorology (trans: Nappo CJ). Springer, Heidelberg, 350pp

    Google Scholar 

  • Fortak H (1967) Vorlesungen über theoretische Meteorologie – Kinematik der Atmosphäre. Freie Universität Berlin, Inst f Theor Meteor, 89pp

    Google Scholar 

  • Fortak H (1969) Berechnung des charakteristischen “Scales” der Turbulenz der bodennahen Grenzschicht aus Windprofilmessungen. Beitr Phys Atmosph 42:245–250

    Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316pp

    Google Scholar 

  • Gavrilov AS, Petrov JS (1981) Ocenka tocnosti opredelenija turbulentych potokov po standartnym gidrometeorologiceskim izmerenijam nad morem. Meteorol i Gidrol 4:52–59

    Google Scholar 

  • Haltiner GJ, Martin FL (1957) Dynamical and physical meteorology. McGraw-Hill, New York/Toronto/London, 470pp

    Google Scholar 

  • Hantel M, Mayer D (2006) Skriptum theoretische Meteorologie II. Wiener Meteorologische Schriften, Heft 5, Facultas Verlags- und Buchhandels AG, Wien, 191pp

    Google Scholar 

  • Hasse L (1983) Introductory meteorology and fluid dynamics. Springer, Dordrecht, pp 1–51

    Google Scholar 

  • Hasse L, Dobson F (1983) Introductory physics of the atmosphere and ocean. D. Reidel, Dordrecht/Boston/Lancaster/Tokyo, 126pp

    Google Scholar 

  • Hastenrath S (1996) Climate dynamics of the tropics. Kluwer Academic, Dordrecht/ Boston/London, 488pp

    Google Scholar 

  • Heisenberg W (1948) Zur statistischen Theorie der Turbulenz. Z Phys 124:628–657

    Google Scholar 

  • Herbert F (1975) Irreversible Prozesse der Atmosphäre - 3. Teil (Phänomenologische Theorie mikroturbulenter Systeme). Beitr Phys Atmosph 48:1–29

    Google Scholar 

  • Herbert F, Panhans WG (1979) Theoretical studies of the parameterization of the non-neutral surface boundary layer – part I: governing physical concepts. Bound-Layer Meteorol 16:155–167

    Google Scholar 

  • Hesselberg T (1926) Die Gesetze der ausgeglichenen atmosphärischen Bewegungen. Beitr Phys fr. Atmosph 12:141–160

    Google Scholar 

  • Högström U (1967) Turbulent water vapour transfer at different stability conditions. Phys Fluids 10(Suppl):247–254

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound-Layer Meteorol 42:55–78

    Google Scholar 

  • Högström U, Smedman-Högström AS (1974) Turbulence mechanism at an agricultural site. Bound-Layer Meteorol 7:373–389

    Google Scholar 

  • Holton JR (1979) An introduction to dynamic meteorology. Academic/New York/San Francisco/ London, 391pp

    Google Scholar 

  • Holton JR (2004) An introduction to dynamic meteorology. Elsevier/Academic, New York/ San Diego, 535pp

    Google Scholar 

  • Huntley HE (1952) Dimensional analysis. MacDonald & Co, London, 158pp

    Google Scholar 

  • Jacobson MZ (1999) Fundamentals of atmospheric modeling. Cambridge University Press, New York, 656pp

    Google Scholar 

  • Jacobson MZ (2005) Fundamentals of atmospheric modeling. Cambridge University Press, New York, 813pp

    Google Scholar 

  • Johansson C, Smedman A-S, Högström U, Brasseur JG, Khanna S (2001) Critical test of the validity of Monin-Obukhov similarity during convective conditions. J Atmos Sci 58:1549–1566

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Oxford University Press, New York/Oxford, 289pp

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Q J R Meteorol Soc 98:563–589

    Google Scholar 

  • Kazansky AB, Monin AS (1956) Turbulence in the inversion layer near the surface. Izv Acad Nauk SSSR Ser Geophys 1:79–86

    Google Scholar 

  • Kondo J, Kanechika O, Yasuda N (1978) Heat and momentum transfer under strong stability in the atmospheric surface layer. J Atmos Sci 35:1012–1021

    Google Scholar 

  • Kramm G (1989) The estimation of the surface layer parameters from wind velocity, temperature and humidity profiles by least squares methods. Bound-Layer Meteorol 48:315–327

    Google Scholar 

  • Kramm G, Dlugi R (2006) On the correction of eddy fluxes of water vapour and trace gases. J Calcutta Math Soc 2:29–54

    Google Scholar 

  • Kramm G, Herbert F (2006a) The structure functions for velocity and temperature fields from the perspective of dimensional scaling. Flow Turbul Combust 76:23–60

    Google Scholar 

  • Kramm G, Herbert F (2006b) Heuristic derivation of blackbody radiation laws using principles of dimensional analysis. J Calcutta Math Soc 2:1–20

    Google Scholar 

  • Kramm G, Herbert F (2009) Similarity hypotheses for the atmospheric surface layer expressed by non-dimensional characteristic invariants – a review. Open Atmos Sci J 3:48–79

    Google Scholar 

  • Kramm G, Meixner FX (2000) On the dispersion of trace species in the atmospheric boundary layer: a re-formulation of the governing equations for the turbulent flow of the compressible atmosphere. Tellus A 52:500–522

    Google Scholar 

  • Kramm G, Dlugi R, Lenschow DH (1995) A re-evaluation of the Webb correction using density-weighted averages. J Hydrol 166:283–292

    Google Scholar 

  • Kramm G, Herbert F, Bernhardt K, Müller H, Werle P, Foken T, Richter SH (1996) Stability functions for momentum, heat and water vapour and the vertical transport of TKE and pressure fluctuations estimated from measured vertical profiles of wind speed, temperature, and humidity. Beitr Phys Atmos 69:463–475

    Google Scholar 

  • Kramm G, Amaya DJ, Foken T, Mölders N (2013) Hans A. Panofsky’s integral similarity function – at fifty. Atmos Clim Sci 3:581–594

    Google Scholar 

  • Kraus H (2000) Die Atmosphäre der Erde. Eine Einführung in die Meteorologie. Vieweg, Braunschweig/Wiesbaden, 470pp

    Google Scholar 

  • Kraus EB, Businger JA (1994) Atmosphere-ocean interaction. Oxford University Press, New York, 362pp

    Google Scholar 

  • Kertz W (1969) Einführung in die Geophysik. Band 1. Erdkörper. BI Wissenschaftsverlag, Mannheim/Leipzig/Wien/Zürich, 232pp

    Google Scholar 

  • Kitaigorodskij SA (1976) Zur Anwendung der Ähnlichkeitstheorie für die Beschreibung der Turbulenz in der bodennahen Schicht der Atmosphäre. Z Meteorologie 26:185–205

    Google Scholar 

  • Kurz M (1990) Synoptische Meteorologie. Selbstverlag des Deutschen Wetterdienstes, Offenbach

    Google Scholar 

  • Landau LD, Lifshitz EM (1959) Course of theoretical physics – vol 6 fluid mechanics. Pergamon Press, Oxford/New York/Toronto/Sydney/Paris/Frankfurt, 536pp

    Google Scholar 

  • Lange H-J (2002) Die Physik des Wetters und des Klimas. Dietrich Reimer Verlag, Berlin, 625pp

    Google Scholar 

  • Lesieur M (1993) Turbulence in fluids. Kluwer Academic, Dordrecht/Boston/London, 412pp

    Google Scholar 

  • Lesieur M (1997) Recent approaches in large-eddy simulations of turbulence. In Métais, O, Ferziger J (eds) New tools in turbulence modeling. Springer, Berlin/Heidelberg/New York and Les Éditions de Physique, Les Ulis, pp 1–28

    Google Scholar 

  • Lettau H (1950) A re-examination of the “Leipzig wind profile” considering some relations between wind and turbulence in the frictional layer. Tellus 2:125–129

    Google Scholar 

  • Lettau HH (1979) Wind and temperature profile predictions for diabatic surface layers including strong inversion cases. Bound-Layer Meteorol 17:443–464

    Google Scholar 

  • Lin Y-L (2007) Mesoscale dynamics, Cambridge University Press, Cambridge, 630pp

    Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience Publishers (Wiley), New York/London/Sydney, 239pp

    Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875

    Google Scholar 

  • Mildner P (1932) Über Reibung in einer speziellen Luftmasse. Beitr Phys fr Atmos 19:151–158

    Google Scholar 

  • Möller F (1973a) Einführung in die Meteorologie – Physik der Atmosphäre – Band 1. BI Hochschultaschenbücher, Mannheim, 222pp

    Google Scholar 

  • Möller F (1973b) Einführung in die Meteorologie – Physik der Atmosphäre – Band 2. BI Hochschultaschenbücher, Mannheim, 221pp

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Osnovnye zakonomernosti turbulentnogo peremešivanija v prizemnom sloe atmosfery. Trudy Geofiz Inst AN SSSR 24:163–187

    Google Scholar 

  • Monji N (1973) Budgets of turbulent energy and temperature variance in the transition zone from forced to free convection. J Meteorol Soc Jpn 2:133–145

    Google Scholar 

  • Obukhov AM (1946/1971) Turbulentnost’ v temperaturno-neodnorodnoj atmosphere. Trudy Inst Teoret Geofiz AN SSSR 1. English translation in Bound-Layer Meteorol 2:7–29

    Google Scholar 

  • Obukhov AM (1958) Über die Energieverteilung im Spektrum einer turbulenten Strömung. In: Goering H (ed) Sammelband zur statistischen Theorie der Turbulenz. Akademie Verlag, Berlin, pp 83–95

    Google Scholar 

  • Ogura, J, Phillips NA (1962) Scale analysis of deep and shallow convection in the atmosphere. J Atmos Sci 19:173–179

    Google Scholar 

  • Okamoto M, Webb EK (1970) The temperature fluctuations in stable stratification. Q J R Meteorol Soc 96:591–600

    Google Scholar 

  • Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc 56:527–530

    Google Scholar 

  • Pai Mazumder D (2006) On the kinetic energy spectra of turbulence in the thermally stratified atmospheric surface layer. Proc Indian Natl Sci Acad 72:125–133

    Google Scholar 

  • Pal Arya S (1988) Introduction to micrometeorology. Academic, San Diego, 303pp

    Google Scholar 

  • Pandolfo J (1966) Wind and temperature profiles for a constant flux boundary layer in lapse conditions with a variable eddy conductivity to eddy viscosity ratio. J Atmos Sci 23:495–502

    Google Scholar 

  • Panhans WG, Herbert F (1979) Theoretical studies of the parameterization of the non-neutral surface boundary layer – part II: an improved similarity model. Bound-Layer Meteorol 16:169–179

    Google Scholar 

  • Panofsky HA (1961) An alternative derivation of the diabatic wind profile. Q J R Meteorol Soc 87:109–110

    Google Scholar 

  • Panofsky HA (1963) Determination of stress from wind and temperature measurements. Q J R Meteorol Soc 89:85–94

    Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence. Wiley, New York/Chichester/Brisbane/ Toronto/Singapore, 397pp

    Google Scholar 

  • Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent components in the surface layer under convective conditions. Bound-Layer Meteorol 11:355–361

    Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Google Scholar 

  • Pedlosky J (1979) Geophysical fluid dynamics. Springer, New York, 624pp

    Google Scholar 

  • Peixto JP, Oort AH (1992) Physics of climate. Springer, New York, 520pp

    Google Scholar 

  • Pichler H (1984) Dynamik der Atmosphäre. BI Wissenschaftsverlag, Mannheim/Wien/Zürich, 456pp

    Google Scholar 

  • Pielke RA (1984) Mesoscale meteorological modeling. Academic, London, 612pp

    Google Scholar 

  • Poulos GS, Burns SP (2003) An evaluation of bulk Ri-based surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J Atmos Sci 60:2523–2537

    Google Scholar 

  • Prandtl L (1932) Meteorologische Anwendungen der Strömungslehre. Beitr Phys Atmos (Bjerknes-Festband) 19:188–202

    Google Scholar 

  • Priestley CHB (1959) Turbulent transfer in the lower atmosphere. The University of Chicago Press, Chicago, 130pp

    Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:1–25

    Google Scholar 

  • Ray PS (1986) Mesoscale meteorology and forecasting. Am Meteorol Soc, Boston, 793pp

    Google Scholar 

  • Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans R Soc 186:123–164

    Google Scholar 

  • Riegel CA (1999) Fundamentals of atmospheric dynamics and thermodynamics. In: Bridger AFC (ed). World Scientific, Singapore, 496pp

    Google Scholar 

  • Ross HK, Cooney J, Hinzman M, Smock S, Sellhorst G, Dlugi R, Mölders N, Kramm G (2014) Wind power potential in Interior Alaska from a micrometeorological perspective. Atmos Clim Sci 4:100–121

    Google Scholar 

  • Salby ML (1996) Atmospheric physics. Academic, San Diego/New York/Boston/London/ Sydney/Tokyo/Toronto, 627pp

    Google Scholar 

  • Schlichting H (1965) Grenzschicht-Theorie. Braun, Karlsruhe, 736pp

    Google Scholar 

  • Schultz DM (2001) Reexamining the cold conveyor belt. Mon Wea Rev 129:2205–2225

    Google Scholar 

  • Sellers WD (1962) Simplified derivation of the diabatic wind profile. J Atmos Sci 19:180–181

    Google Scholar 

  • Shapiro MA, Gronas S (1999) The life cycle of extratropical cyclones. American Meteorological Society, Boston, 359pp

    Google Scholar 

  • Sommerfeld A (1956) Thermodynamics and statistical mechanic. Lectures on theoretical physics, vol V. Academic, New York, 401pp

    Google Scholar 

  • Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice Hall, Englewood Cliffs, 317pp

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic, Dordrecht/ Boston/London, 666pp

    Google Scholar 

  • Swinbank WC, Dyer AJ (1967) An experimental study in micro-meteorology. Q J R Meteorol Soc 93:494–500

    Google Scholar 

  • Tillman JE (1972) The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Appl Meteorol 11:783–792

    Google Scholar 

  • van Mieghem J (1973) Atmospheric energetics. Clarendon Press, Oxford, 306pp

    Google Scholar 

  • von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr Ges Wiss Gottingen Math. Phys. Klasse 58:271–286

    Google Scholar 

  • von Weizsäcker CF (1948) Das Spektrum der Turbulenz bei großen Reynoldsschen Zahlen. Z Phys 124:614–627

    Google Scholar 

  • Wallace JM, Hobbs PV (1977) Atmospheric science – an introductory survey. Academic, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto, 467pp

    Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric science – an introductory survey. Academic, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto, 483pp

    Google Scholar 

  • Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J R Meteorol Soc 96:67–90

    Google Scholar 

  • Webb EK (1982) Profile relationships in the super adiabatic surface layer. Q J R Meteorol Soc 108:661–688

    Google Scholar 

  • Wiin-Nielsen A, Defant F, Mörth HT (1978) Compendum of meteorology. WMO no 364, 276pp

    Google Scholar 

  • Wyngaard JC, Coté OR (1971) The budget of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28:190–201

    Google Scholar 

  • Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity and budgets of shear stress and heat flux. J Atmos Sci 28:1171–1182

    Google Scholar 

  • Yaglom AM (1977) Comments on wind and temperature flux-profile relationships. Bound-Layer Meteorol 11:89–102

    Google Scholar 

  • Yamamoto G (1959) Theory of turbulent transfer in non-neutral conditions. J Meteorol Soc Jpn 37:60–67

    Google Scholar 

  • Zdunkowski W, Bott A (2003) Dynamics of the atmosphere. Cambridge University Press, Cambridge, 719pp

    Google Scholar 

  • Zilitinkevich SS (1966) Effects of humidity stratification on hydrostatic stability. Izv Atmos Ocean Phys 2:655–658

    Google Scholar 

  • Zilitinkevich SS, Chalikov DV (1968) Opredelenie universal’nych profilej skorosti vetra i temperatury v prizemnom sloe atmosfery. Izv AN SSSR Fiz Atm i Okeana 4:294–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mölders, N., Kramm, G. (2014). Dynamics and Synoptic. In: Lectures in Meteorology. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-02144-7_6

Download citation

Publish with us

Policies and ethics