Skip to main content

Atmospheric Chemistry

  • Chapter
  • First Online:
Lectures in Meteorology

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 2284 Accesses

Abstract

Since the industrial revolution, the anthropogenic emissions of various trace species changed the composition of the atmosphere appreciably. This chapter presents the basics of atmospheric chemistry of the polluted and unpolluted atmosphere including some basic modeling concepts. The sources, transformation in the gas phase and aqueous phase, gas-to-particle conversion, aerosol physics and chemistry, transport, and removal of atmospheric trace gases as well as their relation to atmospheric physics and biogeochemical cycles are discussed and the relations of air chemistry to thermodynamics, radiation and cloud physics are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Radio-carbon dating bases on this principle.

  2. 2.

    It is common practice in air chemistry to not write the units down in equilibrium constants.

  3. 3.

    Svante August Arrhenius, Swedish physicist, chemist, one of the founders of physical chemistry, 1859–1927.

  4. 4.

    Sydney Chapman, British geophysicist and mathematician, 1888–1970.

  5. 5.

    Research suggests that photolysis of vibrationally excited oxygen can provide an extra source of ozone.

  6. 6.

    William Henry, British physicist and chemist, 1774–1836.

  7. 7.

    Jacobus Henricus van’t Hoff, Dutch physical chemist and first winner of the Nobel Prize for Chemistry (1901), 1852–1911.

  8. 8.

    This relationship is the reason why shells of mussels or water snails are more structured in tropical than Arctic waters. It also explains why there is less CO 2 in the ocean during warm climate periods than ice ages.

  9. 9.

    A rule of thumb (necessary, but not sufficient condition) is that the number of components must equal the number of species minus the number of independent reactions.

  10. 10.

    Note that after the unification of the German states, air chemistry changed from a London-type smog to Los Angles type smog in East Germany when the traffic amount increased, filters were installed, plants were shut down, and the usage of sulfur-rich coal was reduced.

  11. 11.

    Some authors make the cut at 1 μm.

  12. 12.

    A spectrum consisting of particles of same size is called mono-dispersed.

  13. 13.

    Georg Simon Ohm, German physicist, 1798–1854.

  14. 14.

    Poly-disperse means particles have different sizes.

  15. 15.

    In the time from 1930 to 2000, human population tripled.

  16. 16.

    Material, concepts, ideas and problems of the following books and articles inspired this chapter. These sources are recommended for further reading.

References

Material, concepts, ideas and problems of the following books and articles inspired this chapter. These sources are recommended for further reading.

  • Andrews DG(2000) Introduction to atmospheric physics. Cambridge University Press, New York, 237pp

    Book  Google Scholar 

  • Brimblecombe P (1986) Air composition and chemistry. Cambridge University Press, London/New York/New Rochelle/Melbourne/Sydney, 247pp

    Google Scholar 

  • Bruno TJ, Svoronos P (2004) Handbook of basic tables for chemical analysis, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Dlugi R, Berger M, Zelger M, Hofzumahaus A, Siese M, Holland F, Wisthaler A, Grabmer W, Hansel A, Koppmann R, Kramm G, Möllmann-Coers M, Knaps A (2010) Turbulent exchange and segregation of HO x radicals and volatile organic compounds above a deciduous forest. Atmos Chem Phys 10:6215–6235

    Article  Google Scholar 

  • Eltahir EAB, Bras RL (1996) Precipitation recycling. Rev Geophys 34:367–378

    Article  Google Scholar 

  • Fletcher NH (1962) The physics of rain clouds. Cambridge University Press, Cambridge/ New York, 386pp

    Google Scholar 

  • Foken T (2014) Micrometeorology (trans: Nappo CJ). Springer, Heidelberg, 350pp

    Google Scholar 

  • Goody RM, Yung YL (1989) Atmospheric radiation: theoretical basis. Oxford University Press, New York/Oxford, 503pp

    Google Scholar 

  • Haltiner GJ, Martin FL (1957) Dynamical and physical meteorology. McGraw-Hill, New York/ Toronto/London, 470pp

    Google Scholar 

  • Hobbs PV (2000a) Introduction to atmospheric chemistry. Cambridge University Press, Cambridge, 262pp

    Book  Google Scholar 

  • Hobbs PV (2000b) Basic physical chemistry for atmospheric sciences. Cambridge University Press, Cambridge, 209pp

    Book  Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, Toronto, 408pp

    Google Scholar 

  • Jacobson MZ (1999) Fundamentals of atmospheric modeling. Cambridge University Press, New York, 656pp

    Google Scholar 

  • Jacobson MZ (2005) Fundamentals of atmospheric modeling. Cambridge University Press, New York, 813pp

    Book  Google Scholar 

  • Kertz W (1969) Einführung in die Geophysik. Band 1. Erdkörper. BI Wissenschaftsverlag, Mannheim/Leipzig/Wien/Zürich, 232pp

    Google Scholar 

  • Kramm G (1995) Zum Austausch von Ozon und reaktiven Stickstoffverbindungen zwischen Atmosphäre und Biosphäre. Maraun-Verlag, Frankfurt, 268pp

    Google Scholar 

  • Kramm G, Dlugi R (1994) Modelling of vertical fluxes of nitric acid, ammonia, and ammonium nitrate in the atmospheric surface layer. J Atmos Chem 18:319–357

    Article  Google Scholar 

  • Kramm G, Meixner FX (2000) On the dispersion of trace species in the atmospheric boundary layer: a reformulation of the governing equations for the turbulent flow of the compressible atmosphere. Tellus A 52:500–522

    Article  Google Scholar 

  • Kramm G, Dlugi R, Mölders N, Müller H (1994) Numerical investigations of the dry deposition of reactive trace gases. In: Baldasano JM et al (eds) Computer simulation, air pollution II, vol 1. Computational Mechanics, Southhampton/Boston, pp 285–307

    Google Scholar 

  • Kramm G, Dlugi R, Dollard GJ, Foken T, Mölders N, Müller H, Seiler W, Sievering H (1995) On the dry deposition of ozone and reactive nitrogen compounds. Atmos Environ 29:3209–3231

    Article  Google Scholar 

  • Kramm G, Beier N, Foken T, Müller H, Schröder P, Seiler W (1996) A SVAT scheme for NO, NO 2, and O 3 - model description and test results. Meteorol Atmos Phys 61:89–106

    Article  Google Scholar 

  • Kramm G, Dlugi R, Mölders N (2004) On the vertically averaged balance equation of atmospheric trace constituents. Meteorol Atmos Phys 86:121–141

    Article  Google Scholar 

  • Lichtfouse E, Schwarzbauer J, Robert D (2012) Environmental chemistry for a sustainable world. Springer, Heidelberg, 541pp

    Book  Google Scholar 

  • Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry – a global perspective. J Geophys Res 86:7210–7254

    Article  Google Scholar 

  • Lutgen FK, Tarbuck EJ (2001) The atmosphere – an introduction to meteorology. Pearson, Boston, 506pp

    Google Scholar 

  • Mölders N (1999) Einfache und akkumulierte Landnutzungsänderungen und ihre Auswirkungen auf Evapotranspiration, Wolken- und Niederschlagsbildung. Wiss. Mitt. Leipzig, 15, Habilitation thesis, 206pp

    Google Scholar 

  • Mölders N (2005) Feedbacks at the hydro-meteorological interface. In: Bronstert A, Carrera J, Kabat P, Lütkemeier S (eds) Coupled models for the hydrological cycle – integrating atmosphere, biosphere, and pedosphere. Springer, Berlin/Heidelberg, pp 192–208

    Google Scholar 

  • Mölders N (2011/2012) Land-use and land-cover changes – impact on climate and air quality. Atmospheric and oceanographic sciences library, vol 44. Springer, Dordrecht. doi:10.1007/978-94-007-1527-1 3

    Google Scholar 

  • Mölders N, Olson MA (2004) Impact of urban effects on precipitation in high-latitudes. J Hydrometeorol 5:409–429

    Article  Google Scholar 

  • Mölders N, Hass H, Jakobs HJ, Laube M, Ebel A (1994) Some effects of different cloud parameterizations in a mesoscale model and a chemistry transport model. J Appl Meteor 33:527–545

    Article  Google Scholar 

  • National Academy of Sciences (1984) Global tropospheric chemistry. National Academic, Washington, DC, 194pp

    Google Scholar 

  • Pais A (1995) Introducing atoms and their nuclei. In: Brown LM, Pais A, Pippard B (eds) Twentieth century physics, vol I. Institute of Physics, Bristol/Philadelphia/American Institute of Physics, New York, pp 43–141

    Chapter  Google Scholar 

  • Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation. D. Reidel, Dordrecht/ Boston/London, 714pp

    Google Scholar 

  • Salby ML (1996) Fundamentals of atmospheric physics. Academic, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto, 627pp

    Google Scholar 

  • Seinfeld JH (1986) Atmospheric chemistry and physics of air pollution. Wiley, New York/ Chichester/Brisbane/Toronto/Singapore, 738pp

    Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley-Interscience, New York, 1326pp

    Google Scholar 

  • Sportisse B (2010) Fundamentals in air pollution. Springer, Heidelberg, 299pp

    Book  Google Scholar 

  • Tetzlaff G, Dlugi R, Friedrich K, Gross G, Hinneburg D, Pahl U, Zelger M, Mölders N (2002) On modeling dry deposition of long-lived and chemically reactive species over heterogeneous terrain. J Atm Chem 42:123–155

    Article  Google Scholar 

  • Thompson AM (1992) The oxidizing capacity of the Earth’s atmosphere: probable past and future changes. Science 256:1157–1165

    Article  Google Scholar 

  • Twomey S, Wojciechowski TA (1969) Observations of the geographical variation of cloud nuclei. J Atmos Sci 26:648–651

    Article  Google Scholar 

  • Visconti G (2001) Fundamentals of physics and chemistry of the atmosphere. Springer, Heidelberg, 593pp

    Book  Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric science – an introductory survey. Academic, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto, 483pp

    Google Scholar 

  • Wayne RP (1985) Chemistry of atmospheres – an introduction to the chemistry of the atmospheres of Earth, the planets, and their satellites. Clarendon, Oxford, 361pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mölders, N., Kramm, G. (2014). Atmospheric Chemistry. In: Lectures in Meteorology. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-02144-7_5

Download citation

Publish with us

Policies and ethics