Skip to main content

Clouds and Precipitation

  • Chapter
  • First Online:
  • 2304 Accesses

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

This chapter introduces the theoretical basis of the seven microphysical processes and the terms of their sub-processes. It discusses the concepts of conservation of total water mass, as well as bulk-parameterizations and spectral cloud models. The various cloud types and cloud morphology as a result of their microphysical properties and formation processes are presented as well. Furthermore, links to applications in remote sensing, and links to the role of clouds in atmospheric chemistry are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Hot water is better for cleaning as the reduced surface tension allows the water to more easily into pores.

  2. 2.

    This name is in recognition of Lord William Kelvin, formerly Sir William Thomson, a British physicist, 1824–1907. He was the first derived this equation.

  3. 3.

    The Gibbs free energy is called the thermodynamic potential at constant pressure (and temperature) to indicate its analogy with the potential energy of a mechanical system that also has a minimum value under equilibrium conditions. For equilibrium transformations (e.g. phase transition) at constant temperature and pressure \(ds = dh/T\).

  4. 4.

    Francois Marie Raoult, French chemist, 1830–1901.

  5. 5.

    Jacobus Hendricus van’t Hoff, Dutch physio-chemist, 1852–1911.

  6. 6.

    This value is only exact at 0 C.

  7. 7.

    The Fletcher (1962) formula results in too low IN concentrations at small ranges of super-cooling temperatures. Meyers et al. (1992) and Cotton et al. (1982) suggested a modified formulation that is sensitive to the saturation conditions to correct the overestimation of ice nuclei in very cold clouds.

  8. 8.

    The slight temperature dependency of thermal conductivity is neglected here.

  9. 9.

    Tor Bergeron, Swedish meteorologist, 1891–1977.

  10. 10.

    Alfred Lothar Wegner, German geophysicist and meteorologist, 1897–1954.

  11. 11.

    Aggregates can survive fall distances of up to 1 km before melting is completed.

  12. 12.

    Material, concepts, ideas and problems of the following books and articles inspired this chapter. These sources are recommended for further reading.

References

Material, concepts, ideas and problems of the following books and articles inspired this chapter. These sources are recommended for further reading.

  • Andrews DG (2000) Introduction to atmospheric physics. Cambridge University Press, New York, 237pp

    Book  Google Scholar 

  • Beheng K (1992) Wolkenmikrophysik. Karlsruhe, unpublished manuscript

    Google Scholar 

  • Braham RR (1968) Meteorological basis for precipitation development. Bull Am Meteorol Soc 49:343–353

    Google Scholar 

  • Cotton WR, Anthes RA (1989) Storm and cloud dynamics. Academic, San Diego/ New York/Berkley/Boston/London/Sydney/Tokyo/Toronto, 883pp

    Google Scholar 

  • Cotton WR, Pielke RA (1995) Human impacts on weather and climate. Cambridge University Press, Cambridge/New York, 288pp

    Google Scholar 

  • Cotton WR, Stephens MA, Nehrkorn T, Tripoli GJ (1982) The Colorado State University three-dimensional cloud/ mesoscale model. Part II: An ice phase parameterization. J Rech Atmos 16:295–320

    Google Scholar 

  • Dingman SL (1994) Physical hydrology. Macmillan Publishing, New York/Oxford/ Singapore/Sydney, 557pp

    Google Scholar 

  • Fletcher NH (1962) The physics of rain clouds. Cambridge University Press, Cambridge

    Google Scholar 

  • Hobbs PV (2000a) Introduction to atmospheric chemistry. Cambridge University Press, Cambridge, 262pp

    Book  Google Scholar 

  • Hobbs PV (2000b) Basic physical chemistry for atmospheric sciences. Cambridge University Press, Cambridge, 209pp

    Book  Google Scholar 

  • Houze RA (1993) Cloud dynamics. Academic, San Diego/New York/Berkley/Boston/London/ Sydney/Tokyo/Toronto, 573pp

    Google Scholar 

  • Keidel CC, Windolf R (1982) Wolkenbilder-Wettervorhersage. BLV Verlag, München, 119pp

    Google Scholar 

  • Kertz W (1969) Einführung in die Geophysik. Band 1. Erdkörper. BI Wissenschaftsverlag, Mannheim/Leipzig/Wien/Zürich, 232pp

    Google Scholar 

  • Kraus H (2000) Die Atmosphäre der Erde. Eine Einführung in die Meteorologie. Vieweg, Braunschweig/Wiesbaden, 470pp

    Google Scholar 

  • Laube M, Höller H (1988) Cloud physics. In: Landolt-Börnstein, Gruppe V: Geophysik und Weltraumforschung 4b. Springer, Berlin/Heidelberg, pp 1–100

    Google Scholar 

  • LeMone MA (1993) The stories clouds tell. American Meteorological Society, Boston, 32pp

    Google Scholar 

  • Li D, Shine KP (1995) A 4-dimensional ozone climatology for UGAMP models. U.K. Universities – Global Atmospheric Modelling Programme internal report no. 35

    Google Scholar 

  • Lin Y-L (2007) Mesoscale dynamics. Cambridge University Press, Cambridge, 630pp

    Book  Google Scholar 

  • Locatelli JD, Hobbs P (1974) Fall speeds and masses of solid precipitation particles. J Geophys Res 79:2185–2197

    Article  Google Scholar 

  • Marshall JS, Hitschfeld W, Gunn KLS (1958) Advances in radar weather. Adv Geophys 2:1–56

    Article  Google Scholar 

  • McKnight TL (1996) Physical geography, 5th edn. Prentice Hall, Upper Saddle River, 624pp

    Google Scholar 

  • Meyers MP, DeMott PJ, Cotton WR (1992) New primary ice-nucleation parameterizations in an explicit cloud model. J Appl Meteorol 31:708–721

    Article  Google Scholar 

  • Mölders N (1999a) On the effects of different flooding stages of the Odra and different landuse types on the local distributions of evapotranspiration, cloudiness and rainfall in the Brandenburg-Polish border area. Contrib Atmos Phys 72:1–24

    Google Scholar 

  • Mölders N (1999b) Einfache und akkumulierte Landnutzungsänderungen und ihre Auswirkungen auf Evapotranspiration, Wolken- und Niederschlagsbildung. Wiss. Mitt. Leipzig, 15, Habilitation thesis, 206pp

    Google Scholar 

  • Mölders N (2011/2012) Land-use and land-cover changes – impact on climate and air quality. Atmospheric and oceanographic sciences library, vol 44. Springer, Dordrecht/ Heidelberg/London/New York. doi:10.1007/978-94-007-1527-1 3

    Google Scholar 

  • Mölders N, Kramm G (2007) Influence of wildfire induced land-cover changes on clouds and precipitation in Interior Alaska – a case study. Atmos Res 84:142–168

    Article  Google Scholar 

  • Mölders N, Olson MA (2004) Impact of urban effects on precipitation in high-latitudes. J Hydrometeorol 5:409–429

    Article  Google Scholar 

  • Mölders N, Hass H, Jakobs HJ, Laube M, Ebel A (1994) Some effects of different cloud parameterizations in a mesoscale model and a chemistry transport model. J Appl Meteorol 33:527–545

    Article  Google Scholar 

  • Mölders N, Laube M, Kramm G (1995) On the parameterization of ice microphysics in a mesoscale-α-weather forecast model. Atmos Res 38:207–235

    Article  Google Scholar 

  • Mölders N, Kramm G, Laube M, Raabe A (1997) On the influence of bulk parameterization schemes of cloud relevant microphysics on the predicted water cycle relevant quantities – a case study. Meteorol Z 6:21–32

    Google Scholar 

  • Möller F (1973) Einführung in die Meteorologie – Physik der Atmosphäre – Band 1. BI Hochschultaschenbücher, Mannheim, 222pp

    Google Scholar 

  • Mossop SC (1978) The influence of the drop size distribution on the production of secondary ice particles during graupel growth. Q J R Meteorol Soc 104:45–57

    Article  Google Scholar 

  • Peixto JP, Oort AH (1992) Physics of climate. Springer, New York, 520pp

    Google Scholar 

  • Petty GW (2008) A first course in atmospheric thermodynamics. Sundog Publishing, Madison, 336pp

    Google Scholar 

  • Pichler H (1984) Dynamik der Atmosphäre. BI Wissenschaftsverlag, Mannheim/Wien/Zürich, 456pp

    Google Scholar 

  • Pielke RA (1984) Mesoscale meteorological modeling. Academic, London, 612pp

    Google Scholar 

  • Prigogine I (1961) Introduction to thermodynamics of irreversible processes. Interscience Publishers, New York/London

    Google Scholar 

  • Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation. D. Reidel, Dordrecht/ Boston/London, 714pp

    Google Scholar 

  • Riegel CA (1999) In: Bridger AFC (ed) Fundamentals of atmospheric dynamics and thermodynamics. World Scientific, Singapore, 496pp

    Google Scholar 

  • Sorbjan Z (1996) Hands-on meteorology: stories, theories, and simple experiments – project atmosphere. American Meteorological Society, Boston

    Google Scholar 

  • Srivastava RC (1967) A study of effects of precipitation on cumulus dynamics. J Atmos Sci 24:36–45

    Article  Google Scholar 

  • Staley DO (1957) Some comments on physical processes at and near the tropopause. Meteorol Atmos Phys 10:1–19

    Google Scholar 

  • Tsonis AA (2002) An introduction to atmospheric thermodynamics. Cambridge University Press, New York, 171pp

    Google Scholar 

  • Twomey S, Wojciechowski TA (1969) Observations of the geographical variation of cloud nuclei. J Atmos Sci 26:648–651

    Article  Google Scholar 

  • Wallace JM, Hobbs PV (1977) Atmospheric science – an introductory survey. Academic, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto, 467pp

    Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric Science – an introductory survey. Academic, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto, 483pp

    Google Scholar 

  • Wayne RP (1985) Chemistry of atmospheres – an introduction to the chemistry of the atmospheres of earth, the planets, and their satellites. Clarendon Press, Oxford, 361pp

    Google Scholar 

  • Zikmunda J, Vali B (1972) Fall patterns and fall velocities of rimed ice crystals. J Atmos Sci 29:1334–1347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mölders, N., Kramm, G. (2014). Clouds and Precipitation. In: Lectures in Meteorology. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-02144-7_3

Download citation

Publish with us

Policies and ethics