Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

  1. 1.

    pag. 30 and following: in the proof of Lemma 2.5.2: replace all the integrals

    $$\int_{{t_0}}^t { \cdots ds} \;\,by\;\,\left| {\int_{{t_0}}^t { \cdots ds} } \right|$$
  2. 2.

    Ch.2, Sec.2.5, pg.31, after (2.11) up to the end of the proof, replace the text by:

    Consider the series

    $$\left( {{x_1}\left( t \right) - {x_0}} \right) + \left( {{x_2}\left( t \right) - {x_1}\left( t \right)} \right) + \ldots + \left( {{x_k}\left( t \right) - {x_{k - 1}}\left( t \right)} \right) + \ldots $$

    The uniform upper bound (2.11) and the fact that the numerical series \(\Sigma \tfrac{M}{L}\tfrac{{{{\left( {b - a} \right)}^k}{L^k}}}{{k!}}\) converges to \(\tfrac{M}{L}{e^{L\left( {b - a} \right)}}\) allows us to use the Weierstrass M-test to infer that \(\sum \left( {{x_k}\left( t \right) - {x_{k - 1}}\left( t \right)} \right)\) is uniformly (and absolutely) convergent to a function ψ(t) in [a; b]. Since

    $${x_k}\left( t \right) = {x_0} + \left( {{x_1}\left( t \right) - {x_0}} \right) + \ldots + \left( {{x_{k - 1}}\left( t \right) - {x_{k - 2}}\left( t \right)} \right) + \left( {{x_k}\left( t \right) - {x_{k - 1}}\left( t \right)} \right),$$

    then the uniform convergence of \(\sum _{j = 1}^{j = k}\left( {{x_j}\left( t \right) - {x_{j - 1}}\left( t \right)} \right)\) to ψ(t) implies the uniform convergence of x k (t) to x 0+ψ(t). This completes the proof.

  3. 3.

    pag.32, line 4: replace

    $$ \cdots \leqslant \int_{{t_0}}^t {\left| {f\left( {s,x\left( s \right)} \right) - f\left( {s,y\left( s \right)} \right)} \right|ds} \leqslant L\int_{{t_0}}^t {\left| {x\left( s \right) - y\left( s \right)} \right|ds} $$

    by

    $$ \cdots \leqslant \left| {\int_{{t_0}}^t {\left| {f\left( {s,x\left( s \right)} \right) - f\left( {s,y\left( s \right)} \right)} \right|ds} } \right| \leqslant L\left| {\int_{{t_0}}^t {\left| {x\left( s \right) - y\left( s \right)} \right|ds} } \right|$$
  4. 4.

    pag.38, second equation: replace

    $$\frac{1}{{x(\alpha - \beta x}}\;\,by\;\,\frac{1}{{x\left( {\alpha - \beta x} \right)}}$$
  5. 5.

    pag.38, Ch.3, Sec. 3.1.1: replace the last 5 lines by .... from which we obtain

    $$\left| {\frac{{x\left( t \right)}}{{\alpha - \beta x\left( t \right)}}} \right| = k{e^{\alpha t}},\quad k = {e^{\alpha c}}.$$

    This is the general solution in implicit form. To solve for x we recall that either (i) αx(t) > 0 for all t ≥ 0, or (ii) α-βx(t) < 0 for all t ≥ 0. In the case (i) we find

    $$\frac{{x\left( t \right)}}{{\alpha - \beta x\left( t \right)}} = k{e^{\alpha t}}\;\;which\,yields\;\;x\left( t \right) = \frac{{\alpha k{e^{\alpha t}}}}{{1 + \beta k{e^{\alpha t}}}}.$$

    In the case (ii) we find

    $$ - \frac{{x\left( t \right)}}{{\alpha - \beta x\left( t \right)}} = k{e^{\alpha t}}\;\;which\,yields\;\;x\left( t \right) = \frac{{ - \alpha k{e^{\alpha t}}}}{{1 + \beta k{e^{\alpha t}}}}.$$

    This shows....

  6. 6.

    pag.51, line -5: replace \(\tfrac{{{e^x}}}{{{{\left( {x + 1} \right)}^2}}}\) by \(\tfrac{{{e^x}}}{{x + 1}}\)

  7. 7.

    pag.62, ex. n.1: replace p, q ≠ 0 by p ≥ 0, q ≥ 1.

  8. 8.

    pag.62, ex. n.2: delete t, x ≥ 0.

  9. 9.

    pag.63, ex. n.17: after ”its singular points” add ”when p = 2, q = 1 and a, b, d 6 ≠ 0.”

  10. 10.

    pag.63, ex. n.27: replace ”for any f(y) ≠ 0, g(y)” by ”for any differentiable f(y) ≠ 0 and any continuous g(y)”

  11. 11.

    pag.97, C7: in the system replace \(z'' = y - 2z\) by \(z' = y - z\).

  12. 12.

    pag.108, ex. A1: replace t 3 - 3t by x 2 = t 3 - 3t.

  13. 13.

    pag.108, ex. A11: replace \(x'' + \tfrac{x}{t} + q\left( t \right)x = 0\) by \(x'' + \tfrac{{x'}}{t} + q\left( t \right)x = 0\).

  14. 14.

    pag.109, ex. B3: replace \(x'' + 8x + 16 = 0\) by \(x'' + 8x' + 16x = 0\)

  15. 15.

    pag.109, ex. B10: replace k ≠ 0 by k > 0

  16. 16.

    pag.109, ex.B11: delete x(0) = 0

  17. 17.

    pag.109, ex.B14: replace ”only one solution tends to a constant.” by ”only constant solutions tend to constants”.

  18. 18.

    pag.110, ex.C14: replace ”has to change sign in (a, b)” by ”cannot be non-negative in (a, b)”

  19. 19.

    pag.111, ex. D4: replace q(t) > 0 by p(t) > 0

  20. 20.

    pag.121, ex. n.8: replace -3x′ by -x

  21. 21.

    pag.153, C7: in the third equation replace -2z by -z.

  22. 22.

    pag.153, D5: replace -3xx′ = -2 by -3x′ = -2x.

  23. 23.

    pag.170, ex. n.7: replace ”all the solutions” by ”all the nontrivial solutions”.

  24. 24.

    pag.171, ex. n.9: in the second equation of the system replace -x by -2x.

  25. 25.

    pag.172, ex. n.21: replace x(0) = 1 by x(0) = 2.

  26. 26.

    pag.185, line 4: replace R - t 0 < t < t 0 + R by t 0 - R i < t < t 0 + R i .

  27. 27.

    pag.185, lines 4 and 5: replace a(t 0) by a 0(t 0)

  28. 28.

    pag.185, line 8: replace ”is the smallest of the” by ”is at least as large as the smallest of the”

  29. 29.

    pag.185, line 5: after ”singular point.” add ”The reader should notice that we have already used the term singular point with a different meaning, dealing with exact equations Mdx + Ndy = 0, see Section 3.2.”

  30. 30.

    pag.187, lines 6 and 11, delete 1+ (three times); line 12, replace x(t) = c(1 + sinh t) by x(t) = c sinh t

  31. 31.

    pag.254, n.5: in the second equation replace x by 3x

  32. 32.

    pag.255, n.13: replace \({x'_2} = {x_1} - {x_2} + {x_3}\) by \({x'_2} = - {x_2} + {x_3}\).

  33. 33.

    pag.255, n.19 in the second equation replace -3x′ by -3x.

  34. 34.

    pag.255, ex. n.20 replace the system by

    and ”a < 3” by -3x.

  35. 35.

    pag.256, ex. n.27 and 28: in the first equation of the system, replace -y by y.

  36. 36.

    pag.257, replace ex. n.35 by

    35. Show that x″ + x + e -t x = 0 has oscillatory solutions.

  37. 37.

    pag.276, ex. n.8: replace ”x′(b) = 1” by ”x′(b) = 0”.

  38. 38.

    pag.276, ex. n.11: add ”where k ≠ 0”.

  39. 39.

    pag.289, ex. n.17: after the equation, replace the given answer by ”The singular points are (0; 0) and \(\left( {\tfrac{{{b^2}}}{{ad}}, - \tfrac{{{b^3}}}{{a{d^2}}}} \right)\).”

  40. 40.

    pag.289, ex. n.33: add ± before the fraction.

  41. 41.

    pag.290, ex. n.1 and 2: replace ”a lipschitzian first derivative” by ”a continuous first derivative”.

  42. 42.

    pag.290, ex. n.37: replace the given solution by \(x\left( t \right) = \tfrac{1}{4}{t^2}\)

  43. 43.

    pag.291, ex. A11: replace \(W\left( 7 \right) = \tfrac{{49}}{6}\) by W(7) = 6

  44. 44.

    pag.291, ex. B8: replace by ”One root of the characteristic equation is positive (if β > 0) or null (if β = 0)”

  45. 45.

    pag.291, ex. B17: replace a-b < 0 by a 2-b<0

  46. 46.

    pag.293, ex. n.15: replace the given solution by \(x\left( t \right) = \tfrac{{{e^{ - bt}}}}{{a - b}} - \tfrac{{{e^{ - at}}}}{{a - b}}\).

  47. 47.

    pag.293, ex. n.20: replace ”has at least one negative root m = -1” by ”has the negative root m = -1.

  48. 48.

    pag.293, ex. n.26: replace \(x\left( t \right) = 2 + 2t - 2{e^t} + {t^2}\) by \(x\left( t \right) = - 1 + \tfrac{1}{2}{e^t} + \tfrac{1}{2}{e^{ - t}} - \tfrac{1}{2}{t^2}.\).

  49. 49.

    pag.294, ex. B5: replace \(\tfrac{7}{3}{e^t}\) by 2e t and \( - \tfrac{2}{3}{e^t}\) by \( - \tfrac{1}{2}{e^t}\).

  50. 50.

    pag.294, ex. B8: replace the given solution by x = c 1 e 2t + c 2 e 3t, y = c 1 e 2t.

  51. 51.

    pag.294, ex. B11: replace the given solution by x = 3c 1 e 2t + c 2 e -2t, y = c 1 e 2t - c 2 e -2t.

  52. 52.

    pag.294, ex. C7: replace \(\tfrac{5}{6}\) by \(\tfrac{1}{3}\).

  53. 53.

    pag.294, ex. D2: replace the given solution by \(x = \tfrac{3}{2}{t^2} + + \smallint y\left( t \right)dt\), where \(y = {e^{ - \tfrac{1}{2}{t^2}}}\left( {{c_1} + 3\smallint {t^2}{e^{\tfrac{1}{2}{t^2}}}dt} \right)\).

  54. 54.

    pag.294, ex. D6: replace the given solution by \(x = {c_1}t - {e^{{c_1}}},y = t - \tfrac{1}{2}{c_1}{t^2} + {c_2}\) as well as \(x = t\ln t - t + {c'_1},y = t - \tfrac{1}{2}{t^2}\ln t + \tfrac{1}{4}{t^2} + {c'_2}\).

  55. 55.

    pag.295, ex. n.3: replace α=β by α=-β.

  56. 56.

    pag.296, ex. n.3: replace the given solution by

    $$\eqalign{ & x\left( t \right) = t + \sum\limits_{n \geqslant 1} {\frac{{{t^{3n + 1}}}}{{\left( {3n + 1} \right)3n\left( {3n - 2} \right)\left( {3n - 3} \right) \cdots 4 \cdot 3}}} \cr & \quad \quad \; + \frac{{{t^2}}}{2} + \sum\limits_{n \geqslant 1} {\frac{{{t^{3n + 2}}}}{{\left( {3n + 2} \right)\left( {3n + 1} \right)\left( {3n - 1} \right)\left( {3n - 2} \right) \cdots 5 \cdot 4 \cdot 2}}.} \cr} $$
  57. 57.

    pag.297, ex. n.8: replace a 0 by 0:

  58. 58.

    pag.298, ex. n.38: replace the given solution by \(x = \left( {4 - {\lambda _1}} \right){A_1}{e^{{\lambda _1}t}} + \left( {4 - {\lambda _2}} \right){A_2}{e^{{\lambda _2}t}},y = {A_1}{e^{{\lambda _1}t}} + {A_2}{e^{{\lambda _2}t}}\), where \({A_i} = \tfrac{{{\lambda _i} - 2}}{{2{\lambda _i} + 2}},{\lambda _{1,2}} = - 1 \pm \sqrt 8 \).

  59. 59.

    pag.299: starting from n.11, all the numbers of the exercises have to be diminished by 1.

  60. 60.

    pag.300, ex. n.11: replace by