Skip to main content

Influence of Environmental Variables on In Vitro Performance

  • Chapter
  • First Online:
  • 1464 Accesses

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

To date, many in vitro Mg biodegradation tests are not being carried out in a reproducible or clear manner. In many cases, values of important variables (such as pH) are not reported, or are not correctly controlled throughout the experiments; in other cases, values are being used which do not mimic physiological conditions. Typical issues include the use of unphysiological temperatures or alkalised media, as well as set-ups with either unadjusted or uncontrolled pH values, far outside the body’s natural range. In many studies, it is difficult to determine what was and was not controlled—this also makes it difficult to compare studies. The influences and impacts of experimental parameters such as pH, solution composition and temperature are discussed in this chapter. It is shown that it is very difficult to relate results from studies performed under non-physiological conditions to in vivo performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mueller WD, Lucia Nascimento M et al (2010) Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater 6(5):1749–1755

    Article  CAS  Google Scholar 

  2. Kim W-C, Kim J-G et al (2008) Influence of Ca on the corrosion properties of magnesium for biomaterials. Mater Lett 62(25):4146–4148

    Article  CAS  Google Scholar 

  3. Denkena B, Lucas A (2007) Biocompatible magnesium alloys as absorbable implant materials—adjusted surface and subsurface properties by machining processes. CIRP Ann: Manuf Technol 56(1):113–116

    Article  Google Scholar 

  4. Hassel T, Bach FW et al (2006) Investigation of the mechanical properties and the corrosion behaviour of low alloyed magnesium–calcium alloys for use as absorbable biomaterial in the implant technique. In: Pekguleryuz M (ed) Conference of metallurgists: magnesium technology in the global age, Montreal, Quebec, Canada, pp 359–369

    Google Scholar 

  5. Lee J-Y, Han G et al (2009) Effects of impurities on the biodegradation behavior of pure magnesium. Met Mater Int 15(6):955–961

    Article  CAS  Google Scholar 

  6. Peng Q, Huang Y et al (2010) Preparation and properties of high purity Mg-Y biomaterials. Biomaterials 31(3):398–403

    Article  CAS  Google Scholar 

  7. Lopez HY, Cortes DA et al (2006) In vitro bioactivity assessment of metallic magnesium. Key Eng Mater 309(311):453–456

    Article  Google Scholar 

  8. Yang L, Zhang E (2009) Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater Sci Eng, C 29(5):1691–1696

    Article  CAS  Google Scholar 

  9. Jones DA (1992) Principles and prevention of corrosion. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  10. Burstein GT, Liu C (2007) Nucleation of corrosion pits in Ringer’s solution containing bovine serum. Corros Sci 49(11):4296–4306

    Article  CAS  Google Scholar 

  11. Omanovic S, Roscoe SG (1999) Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel. Langmuir 15(23):8315–8321

    Article  CAS  Google Scholar 

  12. Trépanier C, Pelton AR (2004) Effect of temperature and pH on the corrosion resistance of passivated nitinol and stainless steel. In: Proceedings of international conference on shape memory and superelastic technologies, ASM International, Baden, Germany, pp 361–366

    Google Scholar 

  13. Burstein GT, Liu C et al (2005) The effect of temperature on the nucleation of corrosion pits on titanium in Ringer’s physiological solution. Biomaterials 26(3):245–256

    Article  CAS  Google Scholar 

  14. Cavanaugh MK, Birbilis N et al (2012) Modeling pit initiation rate as a function of environment for Aluminium alloy 7075-T651. Electrochim Acta 59:336–345

    Article  CAS  Google Scholar 

  15. Lambert RA (1913) The influence of temperature and fluid medium on the survival of embryonic tissues in vitro. J Exp Methods 18(4):406–411

    Article  CAS  Google Scholar 

  16. Kirkland NT, Staiger MP et al (2011) Performance-driven design of biocompatible Mg-alloys. JOM 63(6):28–34

    Article  CAS  Google Scholar 

  17. Gerasimov VV, Rozenfeld IL (1957) Effect of temperature on the rate of corrosion of metals. Russ Chem Bull 6(10):1192–1197

    Article  Google Scholar 

  18. Makar GLJK (1993) Corrosion of magnesium. Int Mater Rev 38(3):138–153

    Article  CAS  Google Scholar 

  19. Song G, Atrens A et al (1997) The anodic dissolution of magnesium in chloride and sulphate solutions. Corros Sci 39(10–11):1981–2004

    Article  CAS  Google Scholar 

  20. Duygulu O, Kaya RA et al (2007) Investigation on the Potential of Magnesium Alloy AZ31 as a Bone Implant. Mater Sci Forum 546–549:421–424

    Article  Google Scholar 

  21. Layrolle P, Daculsi G (2009) Physiochemistry of apatite and its related calcium phosphates. In: Leon B, Jansen JA (eds) Thin calcium phosphate coatings for medical implants. Springer, New York

    Google Scholar 

  22. Yin G, Liu Z et al (2002) Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chem Eng J 87(2):181–186

    Article  CAS  Google Scholar 

  23. Sharpe JR, Sammons RL et al (1997) Effect of pH on protein adsorption to hydroxyapatite and tricalcium phosphate ceramics. Biomaterials 18(6):471–476

    Article  CAS  Google Scholar 

  24. Liang H, Huang F et al (2007) Enhanced calcium phosphate precipitation on the surface of Mg-ion-implanted ZrO2 bioceramic. Surf Rev Lett 14(1):71–77

    Article  CAS  Google Scholar 

  25. Lu X, Leng Y (2005) Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26(10):1097–1108

    Article  CAS  Google Scholar 

  26. Ng WF, Chiu KY et al (2010) Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater Sci Eng C 30(6):898–903

    Article  CAS  Google Scholar 

  27. Waters JH, Miller LR et al (1999) Cause of metabolic acidosis in prolonged surgery. Crit Care Med 27(10):2142–2146

    Article  CAS  Google Scholar 

  28. Chakkalakal DA, Mashoof AA et al (1994) Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 28(12):1439–1443

    Article  CAS  Google Scholar 

  29. Malda J, Woodfield TBF et al (2008) Cell nutrition: in vitro and in vivo. Tissue Eng: A Textbook 1:327–362

    Article  Google Scholar 

  30. Hall JE (2010) Guyton and hall textbook of medical physiology, 11th edn. Elsevier, Amsterdam

    Google Scholar 

  31. Boron WF, Boulpaep EL (eds) (2008) Medical physiology, 2nd edn. Saunders, New York

    Google Scholar 

  32. Sigma-Aldrich (2010) Fundamental techniques in cell culture: A laboratory handbook. Sigma-Aldrich. http://www.sigmaaldrich.com/life-science/cell-culture/learning-center/ecacc-handbook/cell-culture-techniques-6.html#Buffering. Accessed 8 Oct 2010

  33. Good NE, Winget GD et al (1966) Hydrogen ion buffers for biological research. Biochemistry 5(2):467–477

    Article  CAS  Google Scholar 

  34. Masters JRW (ed) (2000) Animal cell cultures. Oxford University Press, Oxford

    Google Scholar 

  35. Eley JH (1988) The use of hepes as a buffer for the growth of the cyanobacterium Anacystis nidulans. Appl Microbiol Biotechnol 28(3):297–300

    Article  CAS  Google Scholar 

  36. Yang JX, Cui FZ et al (2009) Characterization and degradation study of calcium phosphate coating on magnesium alloy bone implant in vitro. IEEE Trans Plasma Sci 37(7):1161–1168

    Article  CAS  Google Scholar 

  37. Puigdomenech I (2013) Medusa chemical equilibrium calculator. Royal Institute of Technology, Sweden

    Google Scholar 

  38. Rettig R, Virtanen S (2009) Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J Biomed Mater Res: Part A 88(2):359–369

    Article  Google Scholar 

  39. Sigma-Aldrich (2010) RPMI-1640 medium: Dutch modification. Sigma-Aldrich Inc. http://www.sigmaaldrich.com/. Accessed 8 Oct 2010

  40. Montemor MF, Simões AM et al (2007) Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Appl Surf Sci 253(16):6922–6931

    Article  CAS  Google Scholar 

  41. Gu X, Zheng Y et al (2010) Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials 31(6):1093–1103

    Article  CAS  Google Scholar 

  42. Roberge PR (2000) Handbook of corrosion engineering. McGraw-Hill, New York

    Google Scholar 

  43. Yamamoto A, Hiromoto S (2009) Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci Eng C 29(5):1559–1568

    Article  CAS  Google Scholar 

  44. Regnier P, Lasaga AC et al (1994) Mechanism of CO3 2− substitution in carbonate-fluorapatite: evidence from FTIR Spectroscopy, 13C NMR, and quantum mechanical calculations. Am Mineral 79(9–10):809–818

    CAS  Google Scholar 

  45. Rey C, Collins B et al (1989) The carbonate environment in bone mineral: a resolution-enhanced fourier transform infrared spectroscopy study. Calcif Tissue Int 45(3):157–164

    Article  CAS  Google Scholar 

  46. Tatzber M, Stemmer M et al (2007) An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett 5(1):9–12

    Article  CAS  Google Scholar 

  47. Doi Y, Moriwaki Y et al (1982) ESR and IR studies of carbonate-containing hydroxyapatites. Calcif Tissue Int 34(1):178–181

    Article  CAS  Google Scholar 

  48. Burgess SK, Carey DM et al (1992) Novel protein inhibits in vitro precipitation of calcium carbonate. Arch Biochem Biophys 297(2):383–387

    Article  CAS  Google Scholar 

  49. Kirkland N, Waterman J et al (2012) Buffer-regulated biocorrosion of pure magnesium. J Mater Sci Mater Med 23(2):283–291

    Article  CAS  Google Scholar 

  50. Gu XN, Zheng YF et al (2009) Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys. Biomed Mater 4(6):8

    Article  Google Scholar 

  51. Xin Y, Hu T et al (2010) Influence of test solutions on in vitro studies of biomedical magnesium alloys. J Electrochem Soc 157(7):C238–C243

    Article  CAS  Google Scholar 

  52. Liu C, Xin Y et al (2007) Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. J Mater Res 22(7):1806–1814

    Article  CAS  Google Scholar 

  53. Eliezer A, Witte F (2010) Corrosion behaviour of magnesium alloys in biomedical environments. Adv Mater Res 95:17–20

    Article  CAS  Google Scholar 

  54. Liu C, Xin Y et al (2007) Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Mater Sci Eng, A 456(1–2):350–357

    Google Scholar 

  55. Alvarez-Lopez M, Pereda MD et al (2010) Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater 6(5):1763–1771

    Article  CAS  Google Scholar 

  56. Witte F, Nellesen J et al (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27(7):1013–1018

    Article  CAS  Google Scholar 

  57. Kokubo T, Kushitani H et al (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. J Biomed Mater Res 24:721–734

    Article  CAS  Google Scholar 

  58. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  CAS  Google Scholar 

  59. Oyane A, Kim H-M et al (2003) Preparation and assessment of revised simulated body fluids. J Biomed Mater Res: Part A 65A(2):188–195

    Article  CAS  Google Scholar 

  60. Takadama H, Hashimoto M et al (2004) Round-robin test of SBF for in vitro measurement of apatite-forming ability of synthetic materials. Phosphorus Res Bull 17:119–125

    CAS  Google Scholar 

  61. Liu CL, Zhang XM et al (2010) In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin. Corros Sci 52(10):3341–3347

    Article  CAS  Google Scholar 

  62. Mueller WD, Nascimento ML et al (2007) Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques. Mater Res 10:5–10

    CAS  Google Scholar 

  63. Klinger A, Steinberg D et al (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36:387–392

    Article  CAS  Google Scholar 

  64. Vogt C, Bechstein K et al (2008) Investigation of the degradation of biodegradable Mg implant alloys in vitro and in vivo by analytical methods. In: Kainer KU (ed) Proceedings of 8th international conference on magnesium alloys and their applications, Weimar, Germany, Wiley-VCH, pp 1162–1174

    Google Scholar 

  65. Padilla N, Bronson A (2007) Electrochemical characterization of albumin protein on Ti-6al-4v alloy immersed in a simulated plasma solution. J Biomed Mater Res Part A 81A(3):531–543

    Article  CAS  Google Scholar 

  66. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  67. Xu L, Pan F et al (2009) In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30(8):1512–1523

    Article  CAS  Google Scholar 

  68. Gu XN (2010) Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg–3Ca alloy ribbons as a biodegradable material. Biomed Mater 5(3):035013

    Article  CAS  Google Scholar 

  69. León B, Jansen JA (eds) (2008) Thin calcium phosphate coatings for medical implants. Springer, New York

    Google Scholar 

  70. Mueller WD, de Mele MFL et al (2009) Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. J Biomed Mater Res: Part A 90A(2):487–495

    Article  CAS  Google Scholar 

  71. Kohrer C, Bhandary UR (2009) Protein engineering. Nucleic acids and molecular biology, vol 22. Springer, Berlin

    Google Scholar 

  72. Ashassi-Sorkhabi H, Ghasemi Z et al (2005) The inhibition effect of some amino acids towards the corrosion of Aluminium in 1 m Hcl+ 1 m H2SO4 Solution. Appl Surf Sci 249(1–4):408–418

    Article  CAS  Google Scholar 

  73. El-Shafei AA, Moussa MNH et al (1997) Inhibitory effect of amino acids on al pitting corrosion in 0.1 M NaCl. J Appl Electrochem 27(9):1075–1078

    Article  CAS  Google Scholar 

  74. Bereket G, Yurt A (2001) The inhibition effect of amino acids and hydroxy carboxylic acids on pitting corrosion of Aluminium alloy 7075. Corros Sci 43(6):1179–1195

    Article  CAS  Google Scholar 

  75. Ashassi-Sorkhabi H, Majidi MR et al (2004) Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution. Appl Surf Sci 225(1–4):176–185

    Article  CAS  Google Scholar 

  76. Kiani MA, Mousavi MF et al (2008) Inhibitory effect of some amino acids on corrosion of Pb-Ca-Sn alloy in sulfuric acid solution. Corros Sci 50(4):1035–1045

    Article  CAS  Google Scholar 

  77. William DF, William RL (2004) Degradative effects of the biological environment on metals and ceramics. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, San Diego, p 430

    Google Scholar 

  78. Bruneel N, Helsen JA (1988) In vitro simulation of biocompatibility of Ti-Al-V. J Biomed Mater Res 22(3):203–214

    Article  CAS  Google Scholar 

  79. Mu Y, Kobayashi T et al (2000) Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J Biomed Mater Res 49(2):238–243

    Article  CAS  Google Scholar 

  80. Li Z, Gu X et al (2008) The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10):1329–1344

    Article  CAS  Google Scholar 

  81. Zhang S, Zhang X et al (2010) Research of Mg-Zn alloy as degradable biomaterial. Acta Biomater 6(2):626–640

    Article  CAS  Google Scholar 

  82. Ren Y, Wang H et al (2007) Study of biodegradation of pure magnesium. Key Eng Mater 342–343:601–604

    Article  Google Scholar 

  83. Witte F, Feyerabend F et al (2007) Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 28(13):2163–2174

    Article  CAS  Google Scholar 

  84. Lorenz C, Brunner JG et al (2009) Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater 5(7):2783–2789

    Article  CAS  Google Scholar 

  85. Zhang S, Li J et al (2009) In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Mater Sci Eng C 29(6):1907–1912

    Article  CAS  Google Scholar 

  86. Zhang E, Yin D et al (2009) Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application. Mater Sci Eng C 29(3):987–993

    Article  CAS  Google Scholar 

  87. Witte F, Feyerabend F et al (2006) Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. Tissue Eng 12(12):3545–3556

    Article  Google Scholar 

  88. Pietak AM, Mahoney T et al (2007) Bone-like matrix formation on magnesium and magnesium alloys. J Biomed Mater Res 19(1):407–415

    Google Scholar 

  89. Gu X, Zheng Y et al (2009) In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30(4):484–498

    Article  CAS  Google Scholar 

  90. Feyerabend F, Fischer J et al (2010) Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 6(5):1834–1842

    Article  CAS  Google Scholar 

  91. Yun Y, Dong Z et al (2009) Biodegradable Mg corrosion and osteoblast cell culture studies. Mater Sci Eng C 29(6):1814–1821

    Article  CAS  Google Scholar 

  92. Feser K, Kietzmann M et al (2010) Effects of degradable Mg-Ca alloys on dendritic cell function. J Biomater Appl 25(7):685–697

    Article  Google Scholar 

  93. Wong HM, Yeung KWK et al (2010) A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31:2084–2096

    Article  CAS  Google Scholar 

  94. Hiromoto S (2008) Corrosion of metallic biomaterials in cell culture environments. Electrochem Soc Interface 17:41–44

    CAS  Google Scholar 

  95. Witte F, Ulrich H et al (2007) Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response. J Biomed Mater Res: Part A 81:748–756

    Article  CAS  Google Scholar 

  96. Love LC (1985) Principles of metallurgy. Reston Publishing Company, Reston

    Google Scholar 

  97. Doege E, Droder K (2003) Deformation of magnesium. In: Kainer KU (ed) Magnesium—alloys and technologies. Wilkey-VCH Verlag GmbH, Weinheim

    Google Scholar 

  98. Shi Z, Atrens A (2011) An innovative specimen configuration for the study of Mg corrosion. Corros Sci 53(1):226–246

    Article  CAS  Google Scholar 

  99. Alvarez RB, Martin HJ et al (2010) Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy. Corros Sci 52(5):1635–1648

    Article  CAS  Google Scholar 

  100. Gentile F, Tirinato L et al (2010) Cells preferentially grow on rough substrates. Biomaterials 31(28):7205–7212

    Article  CAS  Google Scholar 

  101. Bruckenstein S, Sharkey JW et al (1985) Effect of polishing with different size abrasives on the current response at a rotating disk electrode. Anal Chem 57(1):368–371

    Article  CAS  Google Scholar 

  102. Samuels LE (2003) Metallographic polishing by mechanical methods, 4th edn. ASM International, Materials Park

    Google Scholar 

  103. Gale WF, Totemeir TC (eds) (2004) Smithells metals reference book, 8th edn. Elsevier Inc., Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Travis Kirkland .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Kirkland, N.T., Birbilis, N. (2014). Influence of Environmental Variables on In Vitro Performance. In: Magnesium Biomaterials. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-02123-2_3

Download citation

Publish with us

Policies and ethics