Skip to main content

Introduction to Magnesium Biomaterials

  • Chapter
  • First Online:
Magnesium Biomaterials

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Over the past two decades, research focused on magnesium (Mg) and its alloys as potential biomaterials has progressed rapidly. This is not surprising, given the unique advantages of Mg alloys as biomaterials, especially their combination of good mechanical properties and safe biodegradation. Current investigations examine a wide range of properties, from mechanical strength to toxicity; however, perhaps the most elusive aspect thus far is the biocorrosion of Mg alloys. This chapter provides a succinct review of the area, highlighting salient features and aspects of Mg biomaterials and their development to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park JB, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New York

    Google Scholar 

  2. Rather BD, Hoffman AS et al (1996) Biomaterial science. Academic Press, London

    Google Scholar 

  3. Charnley J (1961) Arthroplasty of the hip: a new operation. The Lancet 277(7187):1129–1132

    Article  Google Scholar 

  4. Charnley J (1963) Tissue reactions to polytetrafluoroethylene. The Lancet 282(7322):1379

    Article  Google Scholar 

  5. Markets and Markets (2011) Global biomaterials market (2009–2014). http://www.marketsandmarkets.com/Market-Reports/biomaterials-393.html

  6. Navarro M, Michiardi A et al (2008) Biomaterials in orthopaedics. J Roy Soc Interface 5(27):1137–1158

    Article  CAS  Google Scholar 

  7. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  CAS  Google Scholar 

  8. Wedepohl KH (1991) Chemical composition and fractionation of the continental crust. Geol Rundsch 80(2):207–223

    Article  CAS  Google Scholar 

  9. Weeks ME (1945) Discovery of the elements. J Chem Educ 22(8)

    Google Scholar 

  10. Roberts CS (1960) Magnesium and its alloys. Wiley, New York

    Google Scholar 

  11. Kramer DA (2008) Magnesium. 2008 minerals yearbook

    Google Scholar 

  12. Friedrich HE (2006) Magnesium technology: metallurgy, design data, applications. Springer, Heidelberg

    Google Scholar 

  13. Huse EC (1878) A new ligature? Chicago Med J Examiner 37:171–172

    Google Scholar 

  14. Lambotte A (1932) L’utilisation du magnesium comme materiel perdu dans l’osteosynthese. Bull Mem Soc Nat Chir 28:1325–1334

    Google Scholar 

  15. Verbrugge J (1933) La tolérance du tissu osseux vis-à-vis du magnésium métallique. Presse Med 55:1112–1114

    Google Scholar 

  16. Verbrugge J (1937) L’utilisation du magnésium dans le traitement chirurgical des fractures. Bull Mém Soc Nat Cir 59(59):813–823

    Google Scholar 

  17. Verbrugge J (1934) Le Matériel métallique résorbable en chirurgie osseuse. La Presse Med 23:460–465

    Google Scholar 

  18. Troitskii VV, Tsitrin DN (1944) The resorbing metallic alloy ‘Osteosinthezit’ as material for fastening broken bone. Khirurgiia 8:41–44

    Google Scholar 

  19. Znamenskii MS (1945) Metallic osteosynthesis by means of and apparatus made of resorbing metal. Khirurgiia 12:60–63

    Google Scholar 

  20. Staiger MP, Pietak AM et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734

    Article  CAS  Google Scholar 

  21. Saris N-EL, Mervaala E et al (2000) Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta 294(1–2):1–26

    Article  CAS  Google Scholar 

  22. Song G (2007) Control of biodegradation of biocompatible magnesium alloys. Corros Sci 49(4):1696–1701

    Article  CAS  Google Scholar 

  23. Seiler HG, Sigel H (1988) Handbook of toxicity of inorganic compounds. Marcel Dekker Inc, New York

    Google Scholar 

  24. Leroy J (1926) Necessite du magnesium pour la croissance de la souris. C R Seances Soc Biol 94:431–433

    Google Scholar 

  25. Lusk JE, Williams RJP et al (1968) Magnesium and the growth of Escherichia Coli. J Biol Chem 243(10):2618–2624

    CAS  Google Scholar 

  26. Vormann J (2003) Magnesium: nutrition and metabolism. Mol Aspects Med 24:27–37

    Article  CAS  Google Scholar 

  27. Sojka JE, Weaver CM (1995) Magnesium supplementation and osteoporosis. Nutr Rev 53(3):71–74

    Article  CAS  Google Scholar 

  28. Mudali UK, Raj B et al (2003) Corrosion of bio implants. Sadhana Acad Proc Eng Sci 28(3–4):601–637

    Google Scholar 

  29. Kirkland NT (2012) Magnesium biomaterials: past, present and future. Corros Eng Sci Technol 47(5):322–328

    Article  CAS  Google Scholar 

  30. Witte F, Nellesen J et al (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27(7):1013–1018

    Article  CAS  Google Scholar 

  31. Grogan JA, O’Brien BJ et al (2011) A corrosion model for bioabsorbable metallic stents. Acta Biomater 7(9):3523–3533

    Article  CAS  Google Scholar 

  32. Walker J, Shadanbaz S et al (2012) Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing. J Biomed Mater Res B Appl Biomater 100B(4):1134–1141

    Article  CAS  Google Scholar 

  33. Park JB, Bronzino JD (2003) Biomaterials: principles and applications. CRC Press, London

    Google Scholar 

  34. Puleo DA, Bizios R (2009) Biological interactions on materials surfaces: understanding and controlling protein, cell and tissue responses. Springer, London

    Book  Google Scholar 

  35. Department TAFST (2006) Magnesium alloys. The American Foundry Society, Schaumburg

    Google Scholar 

  36. Richards AM, Coleman NW et al (2010) Bone density and cortical thickness in normal, osteopenic, and osteoporotic sacra. J Osteoporos

    Google Scholar 

  37. Avedesian MM, Baker H (1999) Magnesium and magnesium alloys. ASM International, Materials Park, Ohio

    Google Scholar 

  38. Emley EF (1966) Principles of magnesium technology. Pergamon Press

    Google Scholar 

  39. Kirkland NT, Kolbeinsson I et al (2011) Synthesis and properties of topologically ordered porous magnesium. Mater Sci Eng B 176(20):1666–1672

    Article  CAS  Google Scholar 

  40. Staiger MP, Kolbeinsson I et al (2010) Synthesis of topologically-ordered open-cell porous magnesium. Mater Lett 64(23):2572–2574

    Article  CAS  Google Scholar 

  41. Kirkland NT, Kolbeinsson I et al (2009) Processing-property relationships of as-cast magnesium foams with controllable architecture. Int J Mod Phys B 23(6–7):1002–1008

    Article  CAS  Google Scholar 

  42. Wintermantel E, Suk-Woo H (1998) Biokompatible Werkstoffe und Bauweisen (Biocompatible material and design), vol 2. Springer

    Google Scholar 

  43. Pietrzak WS, Sarver D et al (1996) Bioresorbable implants: practical considerations. Bone 19(1):S109–S119

    Article  Google Scholar 

  44. Vadapalli S, Sairyo K et al (2006) Biomechanical rationale for using polyetheretherketone (peek) spacers for lumbar interbody fusion: a finite element study. Spine 31(26):E992–E998

    Article  Google Scholar 

  45. Tsantrizos A, Baramki HG et al (2000) Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Spine 25(15):1899–1907

    Article  CAS  Google Scholar 

  46. Rashmir-Raven AM, Richardson DC et al (1995) The response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods. J Appl Biomater 6(4):237–242

    Article  CAS  Google Scholar 

  47. Blokhuis TJ, Termaat M et al (2007) Properties of calcium phosphate ceramics in relation for their in vivo behaviour. J Trauma Inj Infect Crit Care 48

    Google Scholar 

  48. Allan B (1999) Closer to nature: new biomaterials and tissue engineering. Br J Opthalmology 83:1235–1240

    Article  CAS  Google Scholar 

  49. Merck A (2006) International water, electrolyte mineral, and acid/base metabolism. In: Porter RS, Kaplan JL (eds) Merck manual of diagnosis and therapy. Merck & Co., Inc

    Google Scholar 

  50. Okuma T (2001) Magnesium and bone strength. Nutrition 17:679–680

    Article  CAS  Google Scholar 

  51. Wolf FI, Cittadini A (2003) Chemistry and biochemistry of magnesium. Mol Aspects Med 24:3–9

    Article  CAS  Google Scholar 

  52. Hartwig A (2001) Role of magnesium in genomic stability. Mutat Res Fundam Mol Mech Mutagenesis 475:113–121

    Article  CAS  Google Scholar 

  53. Howlett CR, Zreiqat H et al (1994) The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells. J Mater Sci Mater Med 9:715

    Article  Google Scholar 

  54. Lopez HY, Cortes DA et al (2006) In vitro bioactivity assessment of metallic magnesium. Key Eng Mater 309–311:453–456

    Article  Google Scholar 

  55. Kim SR, Lee JH et al (2003) Synthesis of Si, Mg substituted Hydroxyapatites and their sintering behaviors. Biomaterials 24(8):1389–1398

    Article  Google Scholar 

  56. Puleo DA, Huh WW (1995) Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J Appl Biomater 6(2):109–116

    Article  CAS  Google Scholar 

  57. Granchi D, Ciapetti G et al (1999) Cytokine release in mononuclear cells of patients with Co-Cr hip prosthesis. Biomaterials 20(12):1079–1086

    Article  CAS  Google Scholar 

  58. Pholer OEM (1986) Failure of orthopaedic metallic implants. In: ASM handbook on failure analysis and prevention, vol 11, 9th edn. ASM International, Metals Park, Ohio, p 670

    Google Scholar 

  59. Bach FW (2006) Development of biocompatible magnesium alloys and investigation of the degradation behaviour. In: Sustainable bioresorbable and permanent implants of metallic and ceramic materials. Medical University of Hanover

    Google Scholar 

  60. Davis KG, Marras WS et al (1998) Evaluation of spinal loading during lowering and lifting. Clin Biomech 13(3):141–152

    Article  Google Scholar 

  61. Polmear IJ (1999) Magnesium and magnesium alloys. In: Avedesian MM, Baker H (eds) ASM specialty handbook. USA, pp 12–25

    Google Scholar 

  62. Inoue H, Sugahara K et al (2002) Corrosion rate of magnesium and its alloys in buffered chloride solutions. Corros Sci 44(3):603–610

    Article  CAS  Google Scholar 

  63. Witte F, Hort N et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12(5–6):63–72

    Article  CAS  Google Scholar 

  64. Seal CK, Vince K et al (2009) Biodegradable surgical implants based on magnesium alloys: a review of current research. In: IOP conference series: materials science and engineering: 012011

    Google Scholar 

  65. Meyer-Lindenberg A, Windhugen H et al US 200410241036

    Google Scholar 

  66. Zeng R, Dietzel W et al (2008) Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 10(8):B3–B14

    Article  CAS  Google Scholar 

  67. Williams D (2006) New interests in magnesium. Med Device Technol 17(3):9–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Travis Kirkland .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Kirkland, N.T., Birbilis, N. (2014). Introduction to Magnesium Biomaterials. In: Magnesium Biomaterials. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-02123-2_1

Download citation

Publish with us

Policies and ethics