Skip to main content

Coherent Storage and Phase Modulation of Single Hard-X-Ray Photons

  • Chapter
  • First Online:
Coherent Control of Nuclei and X-Rays

Part of the book series: Springer Theses ((Springer Theses))

  • 637 Accesses

Abstract

In this chapter, we change to another research direction of manipulating single hard x-ray photon via magnetically controlling nuclear dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We neglect the two excited states \(|\frac{3}{2},-\frac{3}{2}\rangle \) and \(|\frac{3}{2},\frac{3}{2}\rangle \) which are not involved in the whole scattering process due to the polarization of the incident x-ray.

  2. 2.

    The choice of \(\varphi \) and \(T\) is not so strict. In the whole chapter we calculate the normalized time spectra \(\Omega (t,z)/\varphi \) which are \(\varphi \) independent under the condition of \(\varphi \ll \Gamma \). The pulse duration \(T\) is chosen such that \(T\ll 1/\Gamma \) to separate the pure nuclear response from the transient effects (equally, \(1/T\gg \Gamma \) to fit the situation of broadband excitation).

  3. 3.

    The initial phases of the nuclear currents are arbitrary, and we assume a zero phase for convenience. In the next section we will see that the absolute phase cannot be defined, and only the relative phase is meaningful.

  4. 4.

    This means that no coherent photon is emitted due to the destructive quantum interference. However, incoherent photons due to the spontaneous decay may still be emitted, limiting the time scale of coherent effects as mentioned before.

References

  1. Y.V. Shvyd’ko, T. Hertrich, U. van Bürck, E. Gerdau, O. Leupold, J. Metge, H.D. Rüter, S. Schwendy, G.V. Smirnov, W. Potzel, P. Schindelmann, Storage of nuclear excitation energy through magnetic switching. Phys. Rev. Lett. 77, 3232 (1996)

    Article  ADS  Google Scholar 

  2. M.D. Lukin, Colloquium : Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457 (2003)

    Article  ADS  Google Scholar 

  3. G. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86, 82 (1998)

    Google Scholar 

  4. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008)

    Google Scholar 

  5. H. Specht, J. Bochmann, M. Mücke, B. Weber, E. Figueroa, D. Moehring, G. Rempe, Phase shaping of single-photon wave packets. Nat. Photonics 3, 469 (2009)

    Article  ADS  Google Scholar 

  6. Y. Shvyd’ko, X-Ray Optics: High-Energy-Resolution Applications (Springer, Berlin, 2004)

    Book  Google Scholar 

  7. Y. Shvyd’ko, S. Stoupin, A. Cunsolo, A. Said, X. Huang, High-reflectivity high-resolution x-ray crystal optics with diamonds. Nat. Phys. 6, 196 (2010)

    Article  Google Scholar 

  8. Y. Shvyd’Ko, S. Stoupin, V. Blank, S. Terentyev, Near-100% bragg reflectivity of x-rays. Nat. Photonics 5, 539 (2011)

    Google Scholar 

  9. S. Chen, H. Wu, Y. Chang, Y. Lee, W. Sun, S. Chang, Y. Stetsko, M. Tang, M. Yabashi, T. Ishikawa, Coherent trapping of x-ray photons in crystal cavities in the picosecond regime. Appl. Phys. Lett. 93, 141105 (2008)

    Article  ADS  Google Scholar 

  10. F. Pfeiffer, C. David, M. Burghammer, C. Riekel, T. Salditt, Two-dimensional x-ray waveguides and point sources. Science 297, 230 (2002)

    Google Scholar 

  11. A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, T. Salditt, Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics. Phys. Rev. Lett. 94, 074801 (2005)

    Article  ADS  Google Scholar 

  12. K. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, R. Tucoulou, Storage of x-ray photons in a crystal resonator. Nature 404, 371 (2000)

    Google Scholar 

  13. Y.V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H.D. Rüter, E.E. Alp, R. Khachatryan, X-ray interferometry with microelectronvolt resolution. Phys. Rev. Lett. 90, 013904 (2003)

    Article  ADS  Google Scholar 

  14. S.-L. Chang, Y.P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, X-ray resonance in crystal cavities: Realization of fabry-perot resonator for hard x rays. Phys. Rev. Lett. 94, 174801 (2005)

    Article  ADS  Google Scholar 

  15. C. Buth, R. Santra, L. Young, Electromagnetically induced transparency for x rays. Phys. Rev. Lett. 98, 253001 (2007)

    Article  ADS  Google Scholar 

  16. T.E. Glover, M.P. Hertlein, S.H. Southworth, T.K. Allison, J. van Tilborg, E.P. Kanter, B. Krässig, H.R. Varma, B. Rude, R. Santra, A. Belkacem, L. Young, Controlling x-rays with light. Nat. Phys. 6, 69 (2010)

    Article  Google Scholar 

  17. B. Dromey, D. Adams, R. Hörlein, Y. Nomura, S. Rykovanov, D. Carroll, P. Foster, S. Kar, K. Markey, P. McKenna et al., Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nat. Phys. 5, 146 (2009)

    Article  Google Scholar 

  18. S. Shwartz, S.E. Harris, Polarization entangled photons at x-ray energies. Phys. Rev. Lett. 106, 080501 (2011)

    Article  ADS  Google Scholar 

  19. S. Shwartz, R.N. Coffee, J.M. Feldkamp, Y. Feng, J.B. Hastings, G.Y. Yin, S.E. Harris, X-ray parametric down-conversion in the langevin regime. Phys. Rev. Lett. 109, 013602 (2012)

    Article  ADS  Google Scholar 

  20. E.P. Kanter, B. Krässig, Y. Li, A.M. March, P. Ho, N. Rohringer, R. Santra, S.H. Southworth, L.F. DiMauro, G. Doumy, C.A. Roedig, N. Berrah, L. Fang, M. Hoener, P.H. Bucksbaum, S. Ghimire, D.A. Reis, J.D. Bozek, C. Bostedt, M. Messerschmidt, L. Young, Unveiling and driving hidden resonances with high-fluence, high-intensity x-ray pulses. Phys. Rev. Lett. 107, 233001 (2011)

    Article  ADS  Google Scholar 

  21. N. Rohringer, D. Ryan, R. London, M. Purvis, F. Albert, J. Dunn, J. Bozek, C. Bostedt, A. Graf, R. Hill et al., Atomic inner-shell x-ray laser at 1.46 nanometres pumped by an x-ray free-electron laser. Nature 481, 488 (2012)

    Article  ADS  Google Scholar 

  22. O. Kocharovskaya, R. Kolesov, Y. Rostovtsev, Coherent optical control of Mössbauer spectra. Phys. Rev. Lett. 82, 3593 (1999)

    Google Scholar 

  23. R. Coussement, Y. Rostovtsev, J. Odeurs, G. Neyens, H. Muramatsu, S. Gheysen, R. Callens, K. Vyvey, G. Kozyreff, P. Mandel, R. Shakhmuratov, O. Kocharovskaya, Controlling absorption of gamma radiation via nuclear level anticrossing. Phys. Rev. Lett. 89, 107601 (2002)

    Article  ADS  Google Scholar 

  24. T.J. Bürvenich, J. Evers, C.H. Keitel, Nuclear quantum optics with x-ray laser pulses. Phys. Rev. Lett. 96, 142501 (2006)

    Article  ADS  Google Scholar 

  25. W.-T. Liao, A. Pálffy, C.H. Keitel, Coherent storage and phase modulation of single hard-x-ray photons using nuclear excitons. Phys. Rev. Lett. 109, 197403 (2012)

    Article  ADS  Google Scholar 

  26. W.-T. Liao, A. Pálffy, C.H. Keitel, Nuclear coherent population transfer with x-ray laser pulses. Phys. Lett. B 705, 134 (2011)

    Article  ADS  Google Scholar 

  27. J. Arthur et al., Linac Coherent Light Source (LCLS) Conceptual Design Report (SLAC, Stanford, 2002)

    Google Scholar 

  28. Xfel@sacla, http://xfel.riken.jp/eng/sacla/ (2012)

  29. M. Altarelli et al., XFEL: The European X-Ray Free-Electron Laser, Technical Design Report (DESY, Hamburg, 2009)

    Google Scholar 

  30. U.v. Bürck, Coherent pulse propagation through resonant media. Hyperfine Interact. 123/124, 483 (1999)

    Google Scholar 

  31. Y.V. Shvyd’ko, Motif: Evaluation of time spectra for nuclear forward scattering. Hyperfine Interact. 125, 173 (2000)

    Google Scholar 

  32. R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications (Springer, Berlin, 2004)

    Google Scholar 

  33. R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, R. Rüffer, Collective lamb shift in single-photon superradiance. Science 328, 1248 (2010)

    Google Scholar 

  34. R. Röhlsberger, H. Wille, K. Schlage, B. Sahoo, Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199 (2012)

    Google Scholar 

  35. A. Pálffy, C.H. Keitel, J. Evers, Single-photon entanglement in the keV regime via coherent control of nuclear forward scattering. Phys. Rev. Lett. 103, 017401 (2009)

    Google Scholar 

  36. S.L. Ruby, Mössbauer experiments without conventional sources. J. Phys. Colloques 35, C6–209 (1974)

    Article  Google Scholar 

  37. G.K. Shenoy, Scientific legacy of Stanley Ruby, in NASSAU 2006 (Springer, Berlin, 2007), p. 5

    Google Scholar 

  38. G.V. Smirnov, U. van Bürck, W. Potzel, P. Schindelmann, S.L. Popov, E. Gerdau, Y.V. Shvyd’ko, H.D. Rüter, O. Leupold, Propagation of nuclear polaritons through a two-target system: Effect of inversion of targets. Phys. Rev. A 71, 023804 (2005)

    Article  ADS  Google Scholar 

  39. M.O. Scully, E.S. Fry, C.H.R. Ooi, K. Wódkiewicz, Directed spontaneous emission from an extended ensemble of n atoms: Timing is everything. Phys. Rev. Lett. 96, 010501 (2006)

    Article  ADS  Google Scholar 

  40. M. Scully, Correlated spontaneous emission on the Volga. Laser Phys. 17, 635 (2007)

    Google Scholar 

  41. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  42. A.A. Svidzinsky, J.-T. Chang, M.O. Scully, Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of \(n\) atoms. Phys. Rev. Lett. 100, 160504 (2008)

    Article  ADS  Google Scholar 

  43. E. Sete, A. Svidzinsky, H. Eleuch, Z. Yang, R. Nevels, M. Scully, Correlated spontaneous emission on the danube. J. Mod. Opt. 57, 1311 (2010)

    Google Scholar 

  44. M.D. Crisp, Propagation of small-area pulses of coherent light through a resonant medium. Phys. Rev. A 1, 1604 (1970)

    Article  ADS  Google Scholar 

  45. Y. Shvyd’ko, Nuclear resonant forward scattering of x rays: Time and space picture. Phys. Rev. B 59, 9132 (1999)

    Article  ADS  Google Scholar 

  46. A. Pálffy, J. Evers, C.H. Keitel, Electric-dipole-forbidden nuclear transitions driven by super-intense laser fields. Phys. Rev. C 77, 044602 (2008)

    Article  ADS  Google Scholar 

  47. Y.V. Shvyd’ko, U. van Bürck, W. Potzel, P. Schindelmann, E. Gerdau, O. Leupold, J. Metge, H.D. Rüter, G.V. Smirnov, Hybrid beat in nuclear forward scattering of synchrotron radiation. Phys. Rev. B 57, 3552 (1998)

    Article  ADS  Google Scholar 

  48. Y.V. Shvyd’ko, U. van Bürck, Hybrid forms of beat phenomena in nuclear forward scattering of synchrotron radiation. Hyperfine Interact. 123–124, 511 (1999)

    Google Scholar 

  49. R. Röhlsberger, J. Evers, private communications (2012)

    Google Scholar 

  50. A. Pálffy, J. Evers, Coherent control of nuclear forward scattering. J. Mod. Opt. 57, 1993 (2010)

    Google Scholar 

  51. G.V. Smirnov, U. van Bürck, J. Arthur, S.L. Popov, A.Q.R. Baron, A.I. Chumakov, S.L. Ruby, W. Potzel, G.S. Brown, Nuclear exciton echo produced by ultrasound in forward scattering of synchrotron radiation. Phys. Rev. Lett. 77, 183 (1996)

    Article  ADS  Google Scholar 

  52. H. Jex, A. Ludwig, F.J. Hartmann, E. Gerdau, O. Leupold, Ultrasound-induced echoes in the nuclear-exciton decay utilising synchrotron radiation bragg-scattered by a quartz crystal. Europhys. Lett. 40, 317 (1997)

    Google Scholar 

  53. N. Miura, T. Osada, S. Takeyama, Research in super-high pulsed magnetic fields at the megagauss laboratory of the university of tokyo. J. Low Temp. Phys. 133, 139 (2003)

    Google Scholar 

  54. R. Röhlsberger, T.S. Toellner, W. Sturhahn, K.W. Quast, E.E. Alp, A. Bernhard, E. Burkel, O. Leupold, E. Gerdau, Coherent resonant x-ray scattering from a rotating medium. Phys. Rev. Lett. 84, 1007 (2000)

    Article  ADS  Google Scholar 

  55. Y. Shvyd’ko, Perturbed nuclear scattering of synchrotron radiation. Hyperfine Interact. 90, 287 (1994)

    Google Scholar 

  56. Y. Shvyd’ko, T. Hertrich, J. Metge, O. Leupold, E. Gerdau, H. Rüter, Reversed time in mössbauer time spectra. Phys. Rev. B 52, R711 (1995)

    Article  ADS  Google Scholar 

  57. Y. Hasegawa, Y. Yoda, K. Izumi, T. Ishikawa, S. Kikuta, X.W. Zhang, M. Ando, Phase transfer in time-delayed interferometry with nuclear resonant scattering. Phys. Rev. Lett. 75, 2216 (1995)

    Article  ADS  Google Scholar 

  58. Y. Hasegawa, S. Kikuta, Time-delayed interferometry with nuclear resonant scattering. Hyperfine Interact. 123–124, 721 (1999)

    Google Scholar 

  59. P. Helistö, E. Ikonen, T. Katila, K. Riski, Coherent transient effects in Mössbauer spectroscopy. Phys. Rev. Lett. 49, 1209 (1982)

    Google Scholar 

  60. P. Helistö, I. Tittonen, M. Lippmaa, T. Katila, Gamma echo. Phys. Rev. Lett. 66, 2037 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Te Liao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liao, WT. (2014). Coherent Storage and Phase Modulation of Single Hard-X-Ray Photons. In: Coherent Control of Nuclei and X-Rays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-02120-1_4

Download citation

Publish with us

Policies and ethics