Skip to main content

Bacterial Infections in Liver

  • Chapter
  • First Online:
  • 2500 Accesses

Abstract

Bacterial infections may cause liver dysfunction through direct infection or as a result of inflammatory mediators from bacterial infections in other body sites. This is not surprising given the extent of the hepatic vascular supply, as well as significant venous drainage from the gastrointestinal system. Abnormal liver functions tests (LFTs) may occur in a variety of septic conditions not directly involving the liver, such as in community-acquired pneumonia. Neonates and infants under 1 year are especially susceptible to liver dysfunction in septic states, due to low bile salt-independent bile flow. Signs and symptoms include jaundice with fever, rigors, and confusion. Abnormalities in LFTs often appear 24–48 h after the onset of initial symptoms, and include mild elevations in transaminases and alkaline phosphatase, with significant hyperbilirubinemia. Canalicular cholestasis, focal hepatocyte fat droplets, and periportal cell infiltrates are commonly encountered histological findings. Sinusoidal leukostasis and adherence to hepatic endothelial cells result from release of TNF-alpha, IL-1, IL-8, and activation of C5a.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ALP:

Alkaline phosphatase

APC:

Antigen presenting cell

CDC:

Center for Diseases Control and Prevention

DC:

Dendritic cell

GGT:

Gamma-glutamyl transferase

HAART:

Highly active antiretroviral therapy

HIV:

Human immunodeficiency virus

HSC:

Hepatic stellate cell

IFN:

Interferon

IL:

Interleukin

InlA:

Internalin A/B

KC:

Kupffer cell

LFT:

Liver function test

LPS:

Lipopolysaccharide

LSEC:

Liver sinusoidal endothelial cell

mDC:

Myeloid DC

MHC:

Major histocompatibility complex

NK:

Natural killer

NKT:

Natural killer T cell

PAMP:

Pathogen-associated molecular pattern

PCR:

Polymerase chain reaction

PD:

Programmed death

pDC:

Plasmacytoid DC

PD-L1:

Programmed death ligand 1

PPR:

Pattern recognition patterns

PSC:

Primary sclerosing cholangitis

Th:

T-helper

TLR:

Toll-like receptor

References

  1. Lefkowitch JH. Hepatic granulomas. J Hepatol. 1999;30 Suppl 1:40–5.

    PubMed  Google Scholar 

  2. Kleiner DE. Granulomas in the liver. Semin Diagn Pathol. 2006;23:161–9.

    Article  PubMed  Google Scholar 

  3. Lamps LW. Hepatic granulomas, with an emphasis on infectious causes. Adv Anat Pathol. 2008;15:309–18.

    Article  PubMed  Google Scholar 

  4. Zumla A, James DG. Granulomatous infections: etiology and classification. Clin Infect Dis. 1996;23:146–58.

    Article  PubMed  CAS  Google Scholar 

  5. Smyk D, Rigopoulou EI, Zen Y, et al. Role for mycobacterial infection in pathogenesis of primary biliary cirrhosis? World J Gastroenterol. 2012;18:4855–65.

    Article  PubMed  Google Scholar 

  6. Essop AR, Posen JA, Hodkinson JH, et al. Tuberculosis hepatitis: a clinical review of 96 cases. Q J Med. 1984;53:465–77.

    PubMed  CAS  Google Scholar 

  7. Farhi DC, Mason III UG, Horsburgh Jr CR. Pathologic findings in disseminated Mycobacterium avium-intracellulare infection. A report of 11 cases. Am J Clin Pathol. 1986;85:67–72.

    PubMed  CAS  Google Scholar 

  8. Okada S. Studies on tuberculoid visceral leprosy; tuberculoid granuloma in the liver, revealed by puncture biopsy. Int J Lepr. 1954;22:41–5.

    PubMed  CAS  Google Scholar 

  9. Klatt EC, Jensen DF, Meyer PR. Pathology of Mycobacterium avium-intracellulare infection in acquired immunodeficiency syndrome. Hum Pathol. 1987;18:709–14.

    Article  PubMed  CAS  Google Scholar 

  10. Wainwright H. Hepatic granulomas. Eur J Gastroenterol Hepatol. 2007;19:93–5.

    Article  PubMed  Google Scholar 

  11. Zumla A, Raviglione M, Hafner R, et al. Tuberculosis. N Engl J Med. 2013;368:745–55.

    Article  PubMed  CAS  Google Scholar 

  12. Lagana SM, Moreira RK, Lefkowitch JH. Hepatic granulomas: pathogenesis and differential diagnosis. Clin Liver Dis. 2010;14:605–17.

    Article  PubMed  Google Scholar 

  13. Smyk DS, Bogdanos DP, Pares A, et al. Tuberculosis is not a risk factor for primary biliary cirrhosis: a review of the literature. Tuberc Res Treat. 2012;2012:218183.

    PubMed  Google Scholar 

  14. Mackaness GB. Cellular resistance to infection. J Exp Med. 1962;116:381–406.

    Article  PubMed  CAS  Google Scholar 

  15. Stavru F, Archambaud C, Cossart P. Cell biology and immunology of Listeria monocytogenes infections: novel insights. Immunol Rev. 2011;240:160–84.

    Article  PubMed  CAS  Google Scholar 

  16. Hamon M, Bierne H, Cossart P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol. 2006;4:423–34.

    Article  PubMed  CAS  Google Scholar 

  17. Allerberger F, Wagner M. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect. 2010;16:16–23.

    Article  PubMed  CAS  Google Scholar 

  18. Ooi ST, Lorber B. Gastroenteritis due to Listeria monocytogenes. Clin Infect Dis. 2005;40:1327–32.

    Article  PubMed  Google Scholar 

  19. Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes Infect. 2007;9:1236–43.

    Article  PubMed  Google Scholar 

  20. Watson R. Listeriosis remains a cause for concern in Europe. BMJ. 2009;338:b319.

    Article  PubMed  Google Scholar 

  21. Gebauer K, Hall JC, Donlon JB, et al. Hepatic involvement in listeriosis. Aust N Z J Med. 1989;19:486–7.

    Article  PubMed  CAS  Google Scholar 

  22. Yu VL, Miller WP, Wing EJ, et al. Disseminated listeriosis presenting as acute hepatitis. Case reports and review of hepatic involvement in listeriosis. Am J Med. 1982;73:773–7.

    Article  PubMed  CAS  Google Scholar 

  23. Pizarro-Cerdá J, Kühbacher A, Cossart P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med. 2012;2(11). pii: a010009. doi: 10.1101/cshperspect.a010009.

  24. Gaillard JL, Berche P, Frehel C, et al. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell. 1991;65:1127–41.

    Article  PubMed  CAS  Google Scholar 

  25. Gaillard JL, Jaubert F, Berche P. The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J Exp Med. 1996;183:359–69.

    Article  PubMed  CAS  Google Scholar 

  26. Kocks C, Gouin E, Tabouret M, et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell. 1992;68:521–31.

    Article  PubMed  CAS  Google Scholar 

  27. Braun TI, Travis D, Dee RR, et al. Liver abscess due to Listeria monocytogenes: case report and review. Clin Infect Dis. 1993; 17:267–9.

    Article  PubMed  CAS  Google Scholar 

  28. Dussurget O, Cabanes D, Dehoux P, et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol. 2002;45:1095–106.

    Article  PubMed  CAS  Google Scholar 

  29. Yano T, Mita S, Ohmori H, et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat Immunol. 2008;9:908–16.

    Article  PubMed  CAS  Google Scholar 

  30. Serbina NV, Salazar-Mather TP, Biron CA, et al. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003;19:59–70.

    Article  PubMed  CAS  Google Scholar 

  31. Gregory SH, Sagnimeni AJ, Wing EJ. Internalin B promotes the replication of Listeria monocytogenes in mouse hepatocytes. Infect Immun. 1997;65:5137–41.

    PubMed  CAS  Google Scholar 

  32. Pappas G, Akritidis N, Bosilkovski M, et al. Brucellosis. N Engl J Med. 2005;352:2325–36.

    Article  PubMed  CAS  Google Scholar 

  33. Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. Lancet Infect Dis. 2006;6:91–9.

    Article  PubMed  Google Scholar 

  34. Pappas G. Treatment of brucellosis. BMJ. 2008;336:678–9.

    Article  PubMed  Google Scholar 

  35. Skendros P, Pappas G, Boura P. Cell-mediated immunity in human brucellosis. Microbes Infect. 2011;13:134–42.

    Article  PubMed  CAS  Google Scholar 

  36. Lapaque N, Takeuchi O, Corrales F, et al. Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell Microbiol. 2006;8:401–13.

    Article  PubMed  CAS  Google Scholar 

  37. Barquero-Calvo E, Conde-Alvarez R, Chacon-Diaz C, et al. The differential interaction of Brucella and ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens. PLoS One. 2009;4:e5893.

    Article  PubMed  Google Scholar 

  38. Pei J, Turse JE, Ficht TA. Evidence of Brucella abortus OPS dictating uptake and restricting NF-kappaB activation in murine macrophages. Microbes Infect. 2008;10:582–90.

    Article  PubMed  CAS  Google Scholar 

  39. Forestier C, Deleuil F, Lapaque N, et al. Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. J Immunol. 2000;165:5202–10.

    PubMed  CAS  Google Scholar 

  40. Barrionuevo P, Cassataro J, Delpino MV, et al. Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2. Infect Immun. 2008;76:250–62.

    Article  PubMed  CAS  Google Scholar 

  41. Akritidis N, Tzivras M, Delladetsima I, et al. The liver in brucellosis. Clin Gastroenterol Hepatol. 2007;5:1109–12.

    Article  PubMed  Google Scholar 

  42. Williams RK, Crossley K. Acute and chronic hepatic involvement of brucellosis. Gastroenterology. 1982;83:455–8.

    PubMed  CAS  Google Scholar 

  43. Guerra H, Deter RL, Williams RP. Infection at the subcellular level. II. Distribution and fate of intravenously injected brucellae within phagocytic cells of guinea pigs. Infect Immun. 1973;8:694–9.

    PubMed  CAS  Google Scholar 

  44. Guerra H, Deter RL, Williams RP. Infection at the subcellular level. I. Localization of intravenously injected brucellae in the vacuolar apparatus of cells of guinea pig liver. Infect Immun. 1972;5:513–23.

    PubMed  CAS  Google Scholar 

  45. Guo F, Zhang H, Chen C, et al. Autophagy favors Brucella melitensis survival in infected macrophages. Cell Mol Biol Lett. 2012;17:249–57.

    Article  PubMed  CAS  Google Scholar 

  46. Starr T, Child R, Wehrly TD, et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe. 2012;11:33–45.

    Article  PubMed  CAS  Google Scholar 

  47. Stout JE, Yu VL. Legionellosis. N Engl J Med. 1997;337:682–7.

    Article  PubMed  CAS  Google Scholar 

  48. Fontana MF, Banga S, Barry KC, et al. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog. 2011;7:e1001289.

    Article  PubMed  CAS  Google Scholar 

  49. Trunk G, Oxenius A. Innate instruction of CD4+ T cell immunity in respiratory bacterial infection. J Immunol. 2012;189:616–28.

    Article  PubMed  CAS  Google Scholar 

  50. Dubuisson JF, Swanson MS. Mouse infection by Legionella, a model to analyze autophagy. Autophagy. 2006;2:179–82.

    PubMed  CAS  Google Scholar 

  51. Matsuda F, Fujii J, Yoshida S. Autophagy induced by 2-deoxy-D-glucose suppresses intracellular multiplication of Legionella pneumophila in A/J mouse macrophages. Autophagy. 2009;5:484–93.

    Article  PubMed  CAS  Google Scholar 

  52. Otto GP, Wu MY, Clarke M, et al. Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol Microbiol. 2004;51:63–72.

    Article  PubMed  CAS  Google Scholar 

  53. Nogueira CV, Lindsten T, Jamieson AM, et al. Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog. 2009;5:e1000478.

    Article  PubMed  Google Scholar 

  54. Florin TA, Zaoutis TE, Zaoutis LB. Beyond cat scratch disease: widening spectrum of Bartonella henselae infection. Pediatrics. 2008;121:e1413–25.

    Article  PubMed  Google Scholar 

  55. Dehio C. Molecular and cellular basis of bartonella pathogenesis. Annu Rev Microbiol. 2004;58:365–90.

    Article  PubMed  CAS  Google Scholar 

  56. Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev. 2012;36:563–99.

    Article  PubMed  CAS  Google Scholar 

  57. Popa C, Abdollahi-Roodsaz S, Joosten LA, et al. Bartonella quintana lipopolysaccharide is a natural antagonist of Toll-like receptor 4. Infect Immun. 2007;75:4831–7.

    Article  PubMed  CAS  Google Scholar 

  58. Papadopoulos NG, Gourgiotis D, Bossios A, et al. Circulating cytokines in patients with cat scratch disease. Clin Infect Dis. 2001;33:e54–6.

    Article  PubMed  CAS  Google Scholar 

  59. White NJ. Melioidosis. Lancet. 2003;361:1715–22.

    Article  PubMed  CAS  Google Scholar 

  60. Piggott JA, Hochholzer L. Human melioidosis. A histopathologic study of acute and chronic melioidosis. Arch Pathol. 1970;90:101–11.

    PubMed  CAS  Google Scholar 

  61. Gong L, Cullinane M, Treerat P, et al. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS One. 2011;6:e17852.

    Article  PubMed  CAS  Google Scholar 

  62. French CT, Toesca IJ, Wu TH, et al. Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci U S A. 2011;108:12095–100.

    Article  PubMed  CAS  Google Scholar 

  63. Healey GD, Elvin SJ, Morton M, et al. Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection. Infect Immun. 2005;73:5945–51.

    Article  PubMed  CAS  Google Scholar 

  64. Lertmemongkolchai G, Cai G, Hunter CA, et al. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-gamma in response to bacterial pathogens. J Immunol. 2001;166:1097–105.

    PubMed  CAS  Google Scholar 

  65. Tippayawat P, Saenwongsa W, Mahawantung J, et al. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei. PLoS Negl Trop Dis. 2009;3:e407.

    Article  PubMed  Google Scholar 

  66. Hoppe I, Brenneke B, Rohde M, et al. Characterization of a murine model of melioidosis: comparison of different strains of mice. Infect Immun. 1999;67:2891–900.

    PubMed  CAS  Google Scholar 

  67. Bast A, Schmidt IH, Brauner P, et al. Defense mechanisms of hepatocytes against Burkholderia pseudomallei. Front Microbiol. 2011;2:277.

    PubMed  Google Scholar 

  68. Bharti AR, Nally JE, Ricaldi JN, et al. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis. 2003;3:757–71.

    Article  PubMed  Google Scholar 

  69. Levett PN. Leptospirosis. Clin Microbiol Rev. 2001;14:296–326.

    Article  PubMed  CAS  Google Scholar 

  70. Arean VM. The pathologic anatomy and pathogenesis of fatal human leptospirosis (Weil’s disease). Am J Pathol. 1962;40:393–423.

    PubMed  CAS  Google Scholar 

  71. Miller NG, Wilson RB. Electron microscopy of the liver of the hamster during acute and chronic leptospirosis. Am J Vet Res. 1966;27:1071–81.

    PubMed  CAS  Google Scholar 

  72. Marangoni A, Aldini R, Sambri V, et al. Uptake and killing of Leptospira interrogans and Borrelia burgdorferi, spirochetes pathogenic to humans, by reticuloendothelial cells in perfused rat liver. Infect Immun. 2000;68:5408–11.

    Article  PubMed  CAS  Google Scholar 

  73. Ellis J, Oyston PC, Green M, et al. Tularemia. Clin Microbiol Rev. 2002;15:631–46.

    Article  PubMed  Google Scholar 

  74. Ortego TJ, Hutchins LF, Rice J, et al. Tularemic hepatitis presenting as obstructive jaundice. Gastroenterology. 1986;91:461–3.

    PubMed  CAS  Google Scholar 

  75. Conlan JW, Chen W, Shen H, et al. Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb Pathog. 2003;34:239–48.

    Article  PubMed  Google Scholar 

  76. Bosio CM, Bielefeldt-Ohmann H, Belisle JT. Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J Immunol. 2007;178:4538–47.

    PubMed  CAS  Google Scholar 

  77. Hajjar AM, Harvey MD, Shaffer SA, et al. Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infect Immun. 2006;74:6730–8.

    Article  PubMed  CAS  Google Scholar 

  78. Schwartz JT, Barker JH, Kaufman J, et al. Francisella tularensis inhibits the intrinsic and extrinsic pathways to delay constitutive apoptosis and prolong human neutrophil lifespan. J Immunol. 2012;188:3351–63.

    Article  PubMed  CAS  Google Scholar 

  79. Nano FE, Zhang N, Cowley SC, et al. A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol. 2004;186:6430–6.

    Article  PubMed  CAS  Google Scholar 

  80. Rowland CA, Hartley MG, Flick-Smith H, et al. Peripheral human gammadelta T cells control growth of both avirulent and highly virulent strains of Francisella tularensis in vitro. Microbes Infect. 2012;14:584–9.

    Article  PubMed  CAS  Google Scholar 

  81. Law HT, Lin AE, Kim Y, et al. Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci Rep. 2011;1:192.

    Article  PubMed  CAS  Google Scholar 

  82. Botelho-Nevers E, Raoult D. Host, pathogen and treatment-related prognostic factors in rickettsioses. Eur J Clin Microbiol Infect Dis. 2011;30:1139–50.

    Article  PubMed  CAS  Google Scholar 

  83. Mansueto P, Vitale G, Cascio A, et al. New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol. 2012;2012:967852.

    Article  PubMed  Google Scholar 

  84. Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12:518–53.

    PubMed  CAS  Google Scholar 

  85. Raoult D, Marrie T, Mege J. Natural history and pathophysiology of Q fever. Lancet Infect Dis. 2005;5:219–26.

    Article  PubMed  CAS  Google Scholar 

  86. Voth DE, Heinzen RA. Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol. 2007;9:829–40.

    Article  PubMed  CAS  Google Scholar 

  87. Shannon JG, Heinzen RA. Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res. 2009;43:138–48.

    Article  PubMed  CAS  Google Scholar 

  88. Howard RJ. Acute necrotizing cholangiohepatitis with Clostridium perfringens: a rare cause of post-transplantation mortality. Gastroenterol Hepatol (N Y). 2010;6:243–5.

    Google Scholar 

  89. Rochon C, Kardashian A, Mahadevappa B, et al. Liver graft failure and hyperbilirubinemia in liver transplantation recipients after Clostridium difficile infection. Transplant Proc. 2011;43:3819–23.

    Article  PubMed  CAS  Google Scholar 

  90. Galyov EE, Brett PJ, DeShazer D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol. 2010;64:495–517.

    Article  PubMed  CAS  Google Scholar 

  91. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7:526–36.

    Article  PubMed  CAS  Google Scholar 

  92. Drebber U, Kasper HU, Ratering J, et al. Hepatic granulomas: histological and molecular pathological approach to differential diagnosis—a study of 442 cases. Liver Int. 2008;28:828–34.

    Article  PubMed  CAS  Google Scholar 

  93. McCluggage WG, Sloan JM. Hepatic granulomas in Northern Ireland: a thirteen year review. Histopathology. 1994;25:219–28.

    Article  PubMed  CAS  Google Scholar 

  94. Dourakis SP, Saramadou R, Alexopoulou A, et al. Hepatic granulomas: a 6-year experience in a single center in Greece. Eur J Gastroenterol Hepatol. 2007;19:101–4.

    Article  PubMed  Google Scholar 

  95. Gaya DR, Thorburn D, Oien KA, et al. Hepatic granulomas: a 10 year single centre experience. J Clin Pathol. 2003;56:850–3.

    Article  PubMed  CAS  Google Scholar 

  96. Satti MB, al-Freihi H, Ibrahim EM, et al. Hepatic granuloma in Saudi Arabia: a clinicopathological study of 59 cases. Am J Gastroenterol. 1990;85:669–74.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios P. Bogdanos M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rigopoulou, E.I., Smyk, D.S., Orfanidou, T., Bogdanos, D.P., Gershwin, M.E. (2014). Bacterial Infections in Liver. In: Gershwin, M., Vierling, J., Manns, M. (eds) Liver Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-02096-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02096-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02095-2

  • Online ISBN: 978-3-319-02096-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics