Skip to main content

Window Proper Orthogonal Decomposition: Application to Continuum and Atomistic Data

  • Chapter
Book cover Reduced Order Methods for Modeling and Computational Reduction

Part of the book series: MS&A - Modeling, Simulation and Applications ((MS&A,volume 9))

Abstract

Proper Orthogonal Decomposition (POD) is a powerful tool for analyzing multidimensional data, especially of vector fields in large-scale simulations. In this article we review the Window Proper Orthogonal Decomposition (WPOD) proposed in [7] for analysis of continuum data and in [5] for analysis of atomistic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amsallem, D., Zahr, M.J., Farhat, C.: Nonlinear model order reduction based on local reduced-order bases. International Journal for Numerical Methods in Engineering 92(10), 891 (2012)

    Article  MathSciNet  Google Scholar 

  2. Deschamps, J., Kantsler, V., Segre, E., Steinberg, V.: Dynamics of a vesicle in general flow. Proc. Natl. Acad. Sci. U.S.A. 106, 11444 (2009)

    Article  MATH  Google Scholar 

  3. Espanol, P., Warren, P.: Statistical-mechanics of dissipative particle dynamics. Europhysics Letters 30(4), 191 (1995)

    Article  Google Scholar 

  4. Fedosov, D.A., Caswell, B., Karniadakis, G.E.: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98(10), 2215 (2010)

    Article  Google Scholar 

  5. Grinberg, L.: Proper orthogonal decomposition of atomistic flow simulations. Journal of Computational Physics 231(16), 5542–5556 (2012)

    Article  Google Scholar 

  6. Grinberg, L., Fedosov, D.A., Karniadakis, G.E.: Proper orthogonal decomposition of atomistic flow simulations. Journal of Computational Physics (2012). doi 10.1016/j.jcp. 2012.08.023

    Google Scholar 

  7. Grinberg, L., Yakhot, A., Karniadakis, G.E.: Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition. Annals of Biomedical Engineering 37(11), 2200 (2009)

    Article  Google Scholar 

  8. Hoogerburgge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 19(3), 155 (1992)

    Article  Google Scholar 

  9. Kantsler, V., Goldstein, R.E.: Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows. Phys. Rev. Lett. 108, 038103 (2012)

    Article  Google Scholar 

  10. Kantsler, V., Segre, E., Steinberg, V.: Vesicle dynamics in time-dependent elongation flow: Wrinkling instability. Phys. Rev. Lett. 99, 178102 (2007)

    Article  Google Scholar 

  11. Kantsler, V., Steinberg, V.: Orientation and dynamics of a vesicle in tank-treadingmotion in shear flow. Phys. Rev. Lett. 95, 258101 (2005)

    Article  Google Scholar 

  12. Kantsler, V., Steinberg, V.: Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96, 036001 (2006)

    Article  Google Scholar 

  13. Karniadakis, G.E., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulation, 2nd ed. Springer, New York (2005)

    Google Scholar 

  14. Kefayati, S., Poepping, T.L.: Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry. Medical Engineering and Physics (2012). DOI 10.1016/j.medengphy.2012.08.020

    Google Scholar 

  15. Lei, H., Caswell, B., Karniadakis, G.E.: Direct construction of mesoscopic models from microscopic simulations. Physical Review E 81, 026704 (2010)

    Article  Google Scholar 

  16. Levant, M., Steinberg, V.: Amplification of thermal noise by vesicle dynamics. Phys. Rev. Lett. 109, 268103 (2012)

    Article  Google Scholar 

  17. Manhart, M.: Vortex shedding from a hemisphere in a turbulent boundary layer. Theoretical and Computational Fluid Dynamics 12, 1 (1998)

    Article  MATH  Google Scholar 

  18. Sirovich, L.: Turbulence and dynamics of coherent structures: I-iii. Quarterly of Applied Mathematics 45, 561 (1987)

    MATH  MathSciNet  Google Scholar 

  19. Sherwin, S.J., Blackburn, H.M.: Three-dimensional instabilities of steady and pulsatile axisymmetric stenotic flows. Journal of Fluid Mechanics 533, 297 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Turitsyn, K., Vergeles, S.S.: Wrinkling of vesicles during transient dynamics in elongational flow. Phys. Rev. Lett. 100, 028103 (2008)

    Article  Google Scholar 

  21. Visual molecular dynamics. http://www.ks.uiuc.edu/Research/vmd

    Google Scholar 

  22. Werder, T., Walther, J., Koumoutsakos, P.: Hybrid atomistic-continuum method for the simulation of dense fluid flows. Journal of Computational Physics 205, 373 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopold Grinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grinberg, L., Deng, M., Karniadakis, G.E., Yakhot, A. (2014). Window Proper Orthogonal Decomposition: Application to Continuum and Atomistic Data. In: Quarteroni, A., Rozza, G. (eds) Reduced Order Methods for Modeling and Computational Reduction. MS&A - Modeling, Simulation and Applications, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-02090-7_10

Download citation

Publish with us

Policies and ethics